Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfpOLD Structured version   Unicode version

Theorem mzpmfpOLD 29096
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) Obsolete version of mzpmfp 29095 as of 13-Jun-2019. (New usage is discouraged.)
Assertion
Ref Expression
mzpmfpOLD  |-  (mzPoly `  I )  =  ran  ( I eval  (flds  ZZ ) )

Proof of Theorem mzpmfpOLD
Dummy variables  a 
b  x  y  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsscn 10666 . . . . . . 7  |-  ZZ  C_  CC
2 eqid 2443 . . . . . . . 8  |-  (flds  ZZ )  =  (flds  ZZ )
3 cnfldbas 17834 . . . . . . . 8  |-  CC  =  ( Base ` fld )
42, 3ressbas2 14241 . . . . . . 7  |-  ( ZZ  C_  CC  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
51, 4ax-mp 5 . . . . . 6  |-  ZZ  =  ( Base `  (flds  ZZ ) )
6 eqid 2443 . . . . . . . 8  |-  ( I eval  (flds  ZZ ) )  =  ( I eval  (flds  ZZ ) )
76, 5evlval 17622 . . . . . . 7  |-  ( I eval  (flds  ZZ ) )  =  ( ( I evalSub  (flds  ZZ ) ) `  ZZ )
87rneqi 5078 . . . . . 6  |-  ran  (
I eval  (flds  ZZ ) )  =  ran  ( ( I evalSub  (flds  ZZ )
) `  ZZ )
9 simpl 457 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  I  e.  _V )
10 cncrng 17849 . . . . . . . 8  |-fld  e.  CRing
11 zsubrg 17878 . . . . . . . 8  |-  ZZ  e.  (SubRing ` fld )
122subrgcrng 16881 . . . . . . . 8  |-  ( (fld  e. 
CRing  /\  ZZ  e.  (SubRing ` fld ) )  ->  (flds  ZZ )  e.  CRing )
1310, 11, 12mp2an 672 . . . . . . 7  |-  (flds  ZZ )  e.  CRing
1413a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  (flds  ZZ )  e.  CRing )
152subrgrng 16880 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  (flds  ZZ )  e.  Ring )
1611, 15ax-mp 5 . . . . . . . 8  |-  (flds  ZZ )  e.  Ring
175subrgid 16879 . . . . . . . 8  |-  ( (flds  ZZ )  e.  Ring  ->  ZZ  e.  (SubRing `  (flds  ZZ ) ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ZZ  e.  (SubRing `  (flds  ZZ ) )
1918a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ZZ  e.  (SubRing `  (flds  ZZ )
) )
20 simpr 461 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  f  e.  ZZ )
215, 8, 9, 14, 19, 20mpfconst 17628 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
f } )  e. 
ran  ( I eval  (flds  ZZ )
) )
22 simpl 457 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  I  e.  _V )
2313a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  (flds  ZZ )  e.  CRing )
2418a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ZZ  e.  (SubRing `  (flds  ZZ )
) )
25 simpr 461 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  f  e.  I )
265, 8, 22, 23, 24, 25mpfproj 17629 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ( g  e.  ( ZZ  ^m  I ) 
|->  ( g `  f
) )  e.  ran  ( I eval  (flds  ZZ ) ) )
27 simp2r 1015 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval  (flds  ZZ )
) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval  (flds  ZZ ) ) ) )  ->  f  e.  ran  ( I eval  (flds  ZZ ) ) )
28 simp3r 1017 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval  (flds  ZZ )
) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval  (flds  ZZ ) ) ) )  ->  g  e.  ran  ( I eval  (flds  ZZ ) ) )
29 zex 10667 . . . . . . . 8  |-  ZZ  e.  _V
30 cnfldadd 17835 . . . . . . . . 9  |-  +  =  ( +g  ` fld )
312, 30ressplusg 14292 . . . . . . . 8  |-  ( ZZ  e.  _V  ->  +  =  ( +g  `  (flds  ZZ )
) )
3229, 31ax-mp 5 . . . . . . 7  |-  +  =  ( +g  `  (flds  ZZ ) )
338, 32mpfaddcl 17632 . . . . . 6  |-  ( ( f  e.  ran  (
I eval  (flds  ZZ ) )  /\  g  e.  ran  ( I eval  (flds  ZZ )
) )  ->  (
f  oF  +  g )  e.  ran  ( I eval  (flds  ZZ ) ) )
3427, 28, 33syl2anc 661 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval  (flds  ZZ )
) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval  (flds  ZZ ) ) ) )  ->  ( f  oF  +  g )  e.  ran  ( I eval  (flds  ZZ ) ) )
35 cnfldmul 17836 . . . . . . . . 9  |-  x.  =  ( .r ` fld )
362, 35ressmulr 14303 . . . . . . . 8  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
3729, 36ax-mp 5 . . . . . . 7  |-  x.  =  ( .r `  (flds  ZZ ) )
388, 37mpfmulcl 17633 . . . . . 6  |-  ( ( f  e.  ran  (
I eval  (flds  ZZ ) )  /\  g  e.  ran  ( I eval  (flds  ZZ )
) )  ->  (
f  oF  x.  g )  e.  ran  ( I eval  (flds  ZZ ) ) )
3927, 28, 38syl2anc 661 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval  (flds  ZZ )
) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval  (flds  ZZ ) ) ) )  ->  ( f  oF  x.  g )  e.  ran  ( I eval  (flds  ZZ ) ) )
40 eleq1 2503 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ f } )  ->  ( b  e. 
ran  ( I eval  (flds  ZZ )
)  <->  ( ( ZZ 
^m  I )  X. 
{ f } )  e.  ran  ( I eval  (flds  ZZ ) ) ) )
41 eleq1 2503 . . . . 5  |-  ( b  =  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  -> 
( b  e.  ran  ( I eval  (flds  ZZ ) )  <->  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  e. 
ran  ( I eval  (flds  ZZ )
) ) )
42 eleq1 2503 . . . . 5  |-  ( b  =  f  ->  (
b  e.  ran  (
I eval  (flds  ZZ ) )  <->  f  e.  ran  ( I eval  (flds  ZZ ) ) ) )
43 eleq1 2503 . . . . 5  |-  ( b  =  g  ->  (
b  e.  ran  (
I eval  (flds  ZZ ) )  <->  g  e.  ran  ( I eval  (flds  ZZ ) ) ) )
44 eleq1 2503 . . . . 5  |-  ( b  =  ( f  oF  +  g )  ->  ( b  e. 
ran  ( I eval  (flds  ZZ )
)  <->  ( f  oF  +  g )  e.  ran  ( I eval  (flds  ZZ ) ) ) )
45 eleq1 2503 . . . . 5  |-  ( b  =  ( f  oF  x.  g )  ->  ( b  e. 
ran  ( I eval  (flds  ZZ )
)  <->  ( f  oF  x.  g )  e.  ran  ( I eval  (flds  ZZ ) ) ) )
46 eleq1 2503 . . . . 5  |-  ( b  =  a  ->  (
b  e.  ran  (
I eval  (flds  ZZ ) )  <->  a  e.  ran  ( I eval  (flds  ZZ ) ) ) )
4721, 26, 34, 39, 40, 41, 42, 43, 44, 45, 46mzpindd 29094 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  (mzPoly `  I
) )  ->  a  e.  ran  ( I eval  (flds  ZZ )
) )
48 simprlr 762 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  ( ( x  e. 
ran  ( I eval  (flds  ZZ )
)  /\  x  e.  (mzPoly `  I ) )  /\  ( y  e. 
ran  ( I eval  (flds  ZZ )
)  /\  y  e.  (mzPoly `  I ) ) ) )  ->  x  e.  (mzPoly `  I )
)
49 simprrr 764 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  ( ( x  e. 
ran  ( I eval  (flds  ZZ )
)  /\  x  e.  (mzPoly `  I ) )  /\  ( y  e. 
ran  ( I eval  (flds  ZZ )
)  /\  y  e.  (mzPoly `  I ) ) ) )  ->  y  e.  (mzPoly `  I )
)
50 mzpadd 29086 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  +  y
)  e.  (mzPoly `  I ) )
5148, 49, 50syl2anc 661 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  ( ( x  e. 
ran  ( I eval  (flds  ZZ )
)  /\  x  e.  (mzPoly `  I ) )  /\  ( y  e. 
ran  ( I eval  (flds  ZZ )
)  /\  y  e.  (mzPoly `  I ) ) ) )  ->  (
x  oF  +  y )  e.  (mzPoly `  I ) )
52 mzpmul 29087 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  x.  y
)  e.  (mzPoly `  I ) )
5348, 49, 52syl2anc 661 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  ( ( x  e. 
ran  ( I eval  (flds  ZZ )
)  /\  x  e.  (mzPoly `  I ) )  /\  ( y  e. 
ran  ( I eval  (flds  ZZ )
)  /\  y  e.  (mzPoly `  I ) ) ) )  ->  (
x  oF  x.  y )  e.  (mzPoly `  I ) )
54 eleq1 2503 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ x } )  ->  ( b  e.  (mzPoly `  I )  <->  ( ( ZZ  ^m  I
)  X.  { x } )  e.  (mzPoly `  I ) ) )
55 eleq1 2503 . . . . 5  |-  ( b  =  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  -> 
( b  e.  (mzPoly `  I )  <->  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  e.  (mzPoly `  I )
) )
56 eleq1 2503 . . . . 5  |-  ( b  =  x  ->  (
b  e.  (mzPoly `  I )  <->  x  e.  (mzPoly `  I ) ) )
57 eleq1 2503 . . . . 5  |-  ( b  =  y  ->  (
b  e.  (mzPoly `  I )  <->  y  e.  (mzPoly `  I ) ) )
58 eleq1 2503 . . . . 5  |-  ( b  =  ( x  oF  +  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  +  y )  e.  (mzPoly `  I ) ) )
59 eleq1 2503 . . . . 5  |-  ( b  =  ( x  oF  x.  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  x.  y )  e.  (mzPoly `  I ) ) )
60 eleq1 2503 . . . . 5  |-  ( b  =  a  ->  (
b  e.  (mzPoly `  I )  <->  a  e.  (mzPoly `  I ) ) )
61 mzpconst 29083 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
x } )  e.  (mzPoly `  I )
)
6261adantlr 714 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  x  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
x } )  e.  (mzPoly `  I )
)
63 mzpproj 29085 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  I )  ->  ( y  e.  ( ZZ  ^m  I ) 
|->  ( y `  x
) )  e.  (mzPoly `  I ) )
6463adantlr 714 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval  (flds  ZZ ) ) )  /\  x  e.  I )  ->  ( y  e.  ( ZZ  ^m  I ) 
|->  ( y `  x
) )  e.  (mzPoly `  I ) )
65 simpr 461 . . . . 5  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval  (flds  ZZ ) ) )  -> 
a  e.  ran  (
I eval  (flds  ZZ ) ) )
665, 32, 37, 8, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65mpfind 17634 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval  (flds  ZZ ) ) )  -> 
a  e.  (mzPoly `  I ) )
6747, 66impbida 828 . . 3  |-  ( I  e.  _V  ->  (
a  e.  (mzPoly `  I )  <->  a  e.  ran  ( I eval  (flds  ZZ ) ) ) )
6867eqrdv 2441 . 2  |-  ( I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval  (flds  ZZ ) ) )
69 fvprc 5697 . . 3  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  (/) )
70 df-evl 17601 . . . . . . 7  |- eval  =  ( a  e.  _V , 
b  e.  _V  |->  ( ( a evalSub  b ) `
 ( Base `  b
) ) )
7170reldmmpt2 6213 . . . . . 6  |-  Rel  dom eval
7271ovprc1 6131 . . . . 5  |-  ( -.  I  e.  _V  ->  ( I eval  (flds  ZZ ) )  =  (/) )
7372rneqd 5079 . . . 4  |-  ( -.  I  e.  _V  ->  ran  ( I eval  (flds  ZZ ) )  =  ran  (/) )
74 rn0 5103 . . . 4  |-  ran  (/)  =  (/)
7573, 74syl6eq 2491 . . 3  |-  ( -.  I  e.  _V  ->  ran  ( I eval  (flds  ZZ ) )  =  (/) )
7669, 75eqtr4d 2478 . 2  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval  (flds  ZZ ) ) )
7768, 76pm2.61i 164 1  |-  (mzPoly `  I )  =  ran  ( I eval  (flds  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2984    C_ wss 3340   (/)c0 3649   {csn 3889    e. cmpt 4362    X. cxp 4850   ran crn 4853   -->wf 5426   ` cfv 5430  (class class class)co 6103    oFcof 6330    ^m cmap 7226   CCcc 9292    + caddc 9297    x. cmul 9299   ZZcz 10658   Basecbs 14186   ↾s cress 14187   +g cplusg 14250   .rcmulr 14251   Ringcrg 16657   CRingccrg 16658  SubRingcsubrg 16873   evalSub ces 17598   eval cevl 17599  ℂfldccnfld 17830  mzPolycmzp 29070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-ofr 6333  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-fz 11450  df-fzo 11561  df-seq 11819  df-hash 12116  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-0g 14392  df-gsum 14393  df-prds 14398  df-pws 14400  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-mhm 15476  df-submnd 15477  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mulg 15560  df-subg 15690  df-ghm 15757  df-cntz 15847  df-cmn 16291  df-abl 16292  df-mgp 16604  df-ur 16616  df-srg 16620  df-rng 16659  df-cring 16660  df-rnghom 16818  df-subrg 16875  df-lmod 16962  df-lss 17026  df-lsp 17065  df-assa 17396  df-asp 17397  df-ascl 17398  df-psr 17435  df-mvr 17436  df-mpl 17437  df-evls 17600  df-evl 17601  df-cnfld 17831  df-mzpcl 29071  df-mzp 29072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator