Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpmfp Structured version   Unicode version

Theorem mzpmfp 35558
Description: Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
Assertion
Ref Expression
mzpmfp  |-  (mzPoly `  I )  =  ran  ( I eval ℤring )

Proof of Theorem mzpmfp
Dummy variables  a 
b  x  y  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 19043 . . . . . 6  |-  ZZ  =  ( Base ` ring )
2 eqid 2422 . . . . . . . 8  |-  ( I eval ℤring )  =  ( I eval ℤring )
32, 1evlval 18746 . . . . . . 7  |-  ( I eval ℤring )  =  ( ( I evalSub ℤring ) `  ZZ )
43rneqi 5080 . . . . . 6  |-  ran  (
I eval ℤring )  =  ran  ( ( I evalSub ℤring ) `  ZZ )
5 simpl 458 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  I  e.  _V )
6 zringcrng 19039 . . . . . . 7  |-ring  e.  CRing
76a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->ring  e. 
CRing )
8 zringring 19040 . . . . . . . 8  |-ring  e.  Ring
91subrgid 18009 . . . . . . . 8  |-  (ring  e.  Ring  ->  ZZ  e.  (SubRing ` ring ) )
108, 9ax-mp 5 . . . . . . 7  |-  ZZ  e.  (SubRing ` ring )
1110a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ZZ  e.  (SubRing ` ring ) )
12 simpr 462 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  f  e.  ZZ )
131, 4, 5, 7, 11, 12mpfconst 18752 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
f } )  e. 
ran  ( I eval ℤring ) )
14 simpl 458 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  I  e.  _V )
156a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->ring  e. 
CRing )
1610a1i 11 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ZZ  e.  (SubRing ` ring ) )
17 simpr 462 . . . . . 6  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  f  e.  I )
181, 4, 14, 15, 16, 17mpfproj 18753 . . . . 5  |-  ( ( I  e.  _V  /\  f  e.  I )  ->  ( g  e.  ( ZZ  ^m  I ) 
|->  ( g `  f
) )  e.  ran  ( I eval ℤring ) )
19 simp2r 1032 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
f  e.  ran  (
I eval ℤring ) )
20 simp3r 1034 . . . . . 6  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
g  e.  ran  (
I eval ℤring ) )
21 zringplusg 19044 . . . . . . 7  |-  +  =  ( +g  ` ring )
224, 21mpfaddcl 18756 . . . . . 6  |-  ( ( f  e.  ran  (
I eval ℤring )  /\  g  e.  ran  ( I eval ℤring ) )  ->  (
f  oF  +  g )  e.  ran  ( I eval ℤring ) )
2319, 20, 22syl2anc 665 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
( f  oF  +  g )  e. 
ran  ( I eval ℤring ) )
24 zringmulr 19046 . . . . . . 7  |-  x.  =  ( .r ` ring )
254, 24mpfmulcl 18757 . . . . . 6  |-  ( ( f  e.  ran  (
I eval ℤring )  /\  g  e.  ran  ( I eval ℤring ) )  ->  (
f  oF  x.  g )  e.  ran  ( I eval ℤring ) )
2619, 20, 25syl2anc 665 . . . . 5  |-  ( ( I  e.  _V  /\  ( f : ( ZZ  ^m  I ) --> ZZ  /\  f  e. 
ran  ( I eval ℤring ) )  /\  (
g : ( ZZ 
^m  I ) --> ZZ 
/\  g  e.  ran  ( I eval ℤring ) ) )  -> 
( f  oF  x.  g )  e. 
ran  ( I eval ℤring ) )
27 eleq1 2495 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ f } )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( ( ZZ 
^m  I )  X. 
{ f } )  e.  ran  ( I eval ℤring )
) )
28 eleq1 2495 . . . . 5  |-  ( b  =  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  -> 
( b  e.  ran  ( I eval ℤring )  <->  ( g  e.  ( ZZ  ^m  I
)  |->  ( g `  f ) )  e. 
ran  ( I eval ℤring ) ) )
29 eleq1 2495 . . . . 5  |-  ( b  =  f  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  f  e.  ran  (
I eval ℤring ) ) )
30 eleq1 2495 . . . . 5  |-  ( b  =  g  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  g  e.  ran  (
I eval ℤring ) ) )
31 eleq1 2495 . . . . 5  |-  ( b  =  ( f  oF  +  g )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( f  oF  +  g )  e.  ran  ( I eval ℤring )
) )
32 eleq1 2495 . . . . 5  |-  ( b  =  ( f  oF  x.  g )  ->  ( b  e. 
ran  ( I eval ℤring )  <->  ( f  oF  x.  g )  e.  ran  ( I eval ℤring )
) )
33 eleq1 2495 . . . . 5  |-  ( b  =  a  ->  (
b  e.  ran  (
I eval ℤring ) 
<->  a  e.  ran  (
I eval ℤring ) ) )
3413, 18, 23, 26, 27, 28, 29, 30, 31, 32, 33mzpindd 35557 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  (mzPoly `  I
) )  ->  a  e.  ran  ( I eval ℤring ) )
35 simprlr 771 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  ->  x  e.  (mzPoly `  I
) )
36 simprrr 773 . . . . . 6  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
y  e.  (mzPoly `  I ) )
37 mzpadd 35549 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  +  y
)  e.  (mzPoly `  I ) )
3835, 36, 37syl2anc 665 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
( x  oF  +  y )  e.  (mzPoly `  I )
)
39 mzpmul 35550 . . . . . 6  |-  ( ( x  e.  (mzPoly `  I )  /\  y  e.  (mzPoly `  I )
)  ->  ( x  oF  x.  y
)  e.  (mzPoly `  I ) )
4035, 36, 39syl2anc 665 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  (
( x  e.  ran  ( I eval ℤring )  /\  x  e.  (mzPoly `  I )
)  /\  ( y  e.  ran  ( I eval ℤring )  /\  y  e.  (mzPoly `  I )
) ) )  -> 
( x  oF  x.  y )  e.  (mzPoly `  I )
)
41 eleq1 2495 . . . . 5  |-  ( b  =  ( ( ZZ 
^m  I )  X. 
{ x } )  ->  ( b  e.  (mzPoly `  I )  <->  ( ( ZZ  ^m  I
)  X.  { x } )  e.  (mzPoly `  I ) ) )
42 eleq1 2495 . . . . 5  |-  ( b  =  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  -> 
( b  e.  (mzPoly `  I )  <->  ( y  e.  ( ZZ  ^m  I
)  |->  ( y `  x ) )  e.  (mzPoly `  I )
) )
43 eleq1 2495 . . . . 5  |-  ( b  =  x  ->  (
b  e.  (mzPoly `  I )  <->  x  e.  (mzPoly `  I ) ) )
44 eleq1 2495 . . . . 5  |-  ( b  =  y  ->  (
b  e.  (mzPoly `  I )  <->  y  e.  (mzPoly `  I ) ) )
45 eleq1 2495 . . . . 5  |-  ( b  =  ( x  oF  +  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  +  y )  e.  (mzPoly `  I ) ) )
46 eleq1 2495 . . . . 5  |-  ( b  =  ( x  oF  x.  y )  ->  ( b  e.  (mzPoly `  I )  <->  ( x  oF  x.  y )  e.  (mzPoly `  I ) ) )
47 eleq1 2495 . . . . 5  |-  ( b  =  a  ->  (
b  e.  (mzPoly `  I )  <->  a  e.  (mzPoly `  I ) ) )
48 mzpconst 35546 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  ZZ )  ->  ( ( ZZ  ^m  I )  X.  {
x } )  e.  (mzPoly `  I )
)
4948adantlr 719 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  x  e.  ZZ )  ->  (
( ZZ  ^m  I
)  X.  { x } )  e.  (mzPoly `  I ) )
50 mzpproj 35548 . . . . . 6  |-  ( ( I  e.  _V  /\  x  e.  I )  ->  ( y  e.  ( ZZ  ^m  I ) 
|->  ( y `  x
) )  e.  (mzPoly `  I ) )
5150adantlr 719 . . . . 5  |-  ( ( ( I  e.  _V  /\  a  e.  ran  (
I eval ℤring ) )  /\  x  e.  I )  ->  (
y  e.  ( ZZ 
^m  I )  |->  ( y `  x ) )  e.  (mzPoly `  I ) )
52 simpr 462 . . . . 5  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval ℤring )
)  ->  a  e.  ran  ( I eval ℤring ) )
531, 21, 24, 4, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52mpfind 18758 . . . 4  |-  ( ( I  e.  _V  /\  a  e.  ran  ( I eval ℤring )
)  ->  a  e.  (mzPoly `  I ) )
5434, 53impbida 840 . . 3  |-  ( I  e.  _V  ->  (
a  e.  (mzPoly `  I )  <->  a  e.  ran  ( I eval ℤring ) ) )
5554eqrdv 2419 . 2  |-  ( I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval ℤring ) )
56 fvprc 5875 . . 3  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  (/) )
57 df-evl 18729 . . . . . . 7  |- eval  =  ( a  e.  _V , 
b  e.  _V  |->  ( ( a evalSub  b ) `
 ( Base `  b
) ) )
5857reldmmpt2 6421 . . . . . 6  |-  Rel  dom eval
5958ovprc1 6336 . . . . 5  |-  ( -.  I  e.  _V  ->  ( I eval ℤring
)  =  (/) )
6059rneqd 5081 . . . 4  |-  ( -.  I  e.  _V  ->  ran  ( I eval ℤring )  =  ran  (/) )
61 rn0 5105 . . . 4  |-  ran  (/)  =  (/)
6260, 61syl6eq 2479 . . 3  |-  ( -.  I  e.  _V  ->  ran  ( I eval ℤring )  =  (/) )
6356, 62eqtr4d 2466 . 2  |-  ( -.  I  e.  _V  ->  (mzPoly `  I )  =  ran  ( I eval ℤring ) )
6455, 63pm2.61i 167 1  |-  (mzPoly `  I )  =  ran  ( I eval ℤring )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   _Vcvv 3080   (/)c0 3761   {csn 3998    |-> cmpt 4482    X. cxp 4851   ran crn 4854   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543    ^m cmap 7483    + caddc 9549    x. cmul 9551   ZZcz 10944   Basecbs 15120   Ringcrg 17779   CRingccrg 17780  SubRingcsubrg 18003   evalSub ces 18726   eval cevl 18727  ℤringzring 19037  mzPolycmzp 35533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-sup 7965  df-oi 8034  df-card 8381  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-fz 11792  df-fzo 11923  df-seq 12220  df-hash 12522  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-0g 15339  df-gsum 15340  df-prds 15345  df-pws 15347  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-submnd 16582  df-grp 16672  df-minusg 16673  df-sbg 16674  df-mulg 16675  df-subg 16813  df-ghm 16880  df-cntz 16970  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-srg 17739  df-ring 17781  df-cring 17782  df-rnghom 17942  df-subrg 18005  df-lmod 18092  df-lss 18155  df-lsp 18194  df-assa 18535  df-asp 18536  df-ascl 18537  df-psr 18579  df-mvr 18580  df-mpl 18581  df-evls 18728  df-evl 18729  df-cnfld 18970  df-zring 19038  df-mzpcl 35534  df-mzp 35535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator