Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpindd Structured version   Visualization version   Unicode version

Theorem mzpindd 35659
Description: "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
mzpindd.co  |-  ( (
ph  /\  f  e.  ZZ )  ->  ch )
mzpindd.pr  |-  ( (
ph  /\  f  e.  V )  ->  th )
mzpindd.ad  |-  ( (
ph  /\  ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) )  ->  ze )
mzpindd.mu  |-  ( (
ph  /\  ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) )  ->  si )
mzpindd.1  |-  ( x  =  ( ( ZZ 
^m  V )  X. 
{ f } )  ->  ( ps  <->  ch )
)
mzpindd.2  |-  ( x  =  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  -> 
( ps  <->  th )
)
mzpindd.3  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
mzpindd.4  |-  ( x  =  g  ->  ( ps 
<->  et ) )
mzpindd.5  |-  ( x  =  ( f  oF  +  g )  ->  ( ps  <->  ze )
)
mzpindd.6  |-  ( x  =  ( f  oF  x.  g )  ->  ( ps  <->  si )
)
mzpindd.7  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
Assertion
Ref Expression
mzpindd  |-  ( (
ph  /\  A  e.  (mzPoly `  V ) )  ->  rh )
Distinct variable groups:    ph, x, f, g    ps, f, g    ch, x    th, x    ta, x    et, x    ze, x    si, x    rh, x    x, V, f, g   
x, A
Allowed substitution hints:    ps( x)    ch( f, g)    th( f, g)    ta( f, g)    et( f,
g)    ze( f, g)    si( f,
g)    rh( f, g)    A( f, g)

Proof of Theorem mzpindd
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5906 . . . 4  |-  ( A  e.  (mzPoly `  V
)  ->  V  e.  _V )
21adantl 473 . . 3  |-  ( (
ph  /\  A  e.  (mzPoly `  V ) )  ->  V  e.  _V )
3 mzpval 35645 . . . . . . 7  |-  ( V  e.  _V  ->  (mzPoly `  V )  =  |^| (mzPolyCld `  V ) )
43adantl 473 . . . . . 6  |-  ( (
ph  /\  V  e.  _V )  ->  (mzPoly `  V )  =  |^| (mzPolyCld `  V ) )
5 ssrab2 3500 . . . . . . . . . 10  |-  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )
65a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  V  e.  _V )  ->  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
7 ovex 6336 . . . . . . . . . . . . . . 15  |-  ( ZZ 
^m  V )  e. 
_V
8 zex 10970 . . . . . . . . . . . . . . 15  |-  ZZ  e.  _V
97, 8constmap 35626 . . . . . . . . . . . . . 14  |-  ( f  e.  ZZ  ->  (
( ZZ  ^m  V
)  X.  { f } )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) ) )
109adantl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { f } )  e.  ( ZZ 
^m  ( ZZ  ^m  V ) ) )
11 mzpindd.co . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  ZZ )  ->  ch )
12 mzpindd.1 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ZZ 
^m  V )  X. 
{ f } )  ->  ( ps  <->  ch )
)
1312elrab 3184 . . . . . . . . . . . . 13  |-  ( ( ( ZZ  ^m  V
)  X.  { f } )  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( (
( ZZ  ^m  V
)  X.  { f } )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  ch ) )
1410, 11, 13sylanbrc 677 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { f } )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
1514ralrimiva 2809 . . . . . . . . . . 11  |-  ( ph  ->  A. f  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
f } )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } )
1615adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  V  e.  _V )  ->  A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
178a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  ZZ  e.  _V )
18 simpllr 777 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  V  e.  _V )
19 simpr 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  g  e.  ( ZZ  ^m  V ) )
20 elmapg 7503 . . . . . . . . . . . . . . . . 17  |-  ( ( ZZ  e.  _V  /\  V  e.  _V )  ->  ( g  e.  ( ZZ  ^m  V )  <-> 
g : V --> ZZ ) )
2120biimpa 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ZZ  e.  _V  /\  V  e.  _V )  /\  g  e.  ( ZZ  ^m  V ) )  ->  g : V --> ZZ )
2217, 18, 19, 21syl21anc 1291 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  g : V
--> ZZ )
23 simplr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  f  e.  V )
2422, 23ffvelrnd 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V
)  /\  g  e.  ( ZZ  ^m  V ) )  ->  ( g `  f )  e.  ZZ )
25 eqid 2471 . . . . . . . . . . . . . 14  |-  ( g  e.  ( ZZ  ^m  V )  |->  ( g `
 f ) )  =  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )
2624, 25fmptd 6061 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V )  ->  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) ) : ( ZZ 
^m  V ) --> ZZ )
278, 7elmap 7518 . . . . . . . . . . . . 13  |-  ( ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  <->  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) ) : ( ZZ  ^m  V
) --> ZZ )
2826, 27sylibr 217 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V )  ->  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  V ) ) )
29 mzpindd.pr . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  V )  ->  th )
3029adantlr 729 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V )  ->  th )
31 mzpindd.2 . . . . . . . . . . . . 13  |-  ( x  =  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  -> 
( ps  <->  th )
)
3231elrab 3184 . . . . . . . . . . . 12  |-  ( ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  /\  th ) )
3328, 30, 32sylanbrc 677 . . . . . . . . . . 11  |-  ( ( ( ph  /\  V  e.  _V )  /\  f  e.  V )  ->  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
3433ralrimiva 2809 . . . . . . . . . 10  |-  ( (
ph  /\  V  e.  _V )  ->  A. f  e.  V  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } )
3516, 34jca 541 . . . . . . . . 9  |-  ( (
ph  /\  V  e.  _V )  ->  ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  /\  A. f  e.  V  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } ) )
36 zaddcl 11001 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
3736adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( ZZ  ^m  V ) --> ZZ  /\  g : ( ZZ  ^m  V
) --> ZZ )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  ( a  +  b )  e.  ZZ )
38 simpl 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( ZZ 
^m  V ) --> ZZ 
/\  g : ( ZZ  ^m  V ) --> ZZ )  ->  f : ( ZZ  ^m  V ) --> ZZ )
39 simpr 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( ZZ 
^m  V ) --> ZZ 
/\  g : ( ZZ  ^m  V ) --> ZZ )  ->  g : ( ZZ  ^m  V ) --> ZZ )
407a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( ZZ 
^m  V ) --> ZZ 
/\  g : ( ZZ  ^m  V ) --> ZZ )  ->  ( ZZ  ^m  V )  e. 
_V )
41 inidm 3632 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ZZ  ^m  V )  i^i  ( ZZ  ^m  V ) )  =  ( ZZ  ^m  V
)
4237, 38, 39, 40, 40, 41off 6565 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( ZZ 
^m  V ) --> ZZ 
/\  g : ( ZZ  ^m  V ) --> ZZ )  ->  (
f  oF  +  g ) : ( ZZ  ^m  V ) --> ZZ )
4342ad2ant2r 761 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  ( g : ( ZZ  ^m  V ) --> ZZ  /\  et ) )  ->  ( f  oF  +  g
) : ( ZZ 
^m  V ) --> ZZ )
4443adantl 473 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  ( f  oF  +  g
) : ( ZZ 
^m  V ) --> ZZ )
45 mzpindd.ad . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) )  ->  ze )
46453expb 1232 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  ze )
4744, 46jca 541 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  ( (
f  oF  +  g ) : ( ZZ  ^m  V ) --> ZZ  /\  ze )
)
48 zmulcl 11009 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
4948adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f : ( ZZ  ^m  V ) --> ZZ  /\  g : ( ZZ  ^m  V
) --> ZZ )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  ( a  x.  b )  e.  ZZ )
5049, 38, 39, 40, 40, 41off 6565 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( ZZ 
^m  V ) --> ZZ 
/\  g : ( ZZ  ^m  V ) --> ZZ )  ->  (
f  oF  x.  g ) : ( ZZ  ^m  V ) --> ZZ )
5150ad2ant2r 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  ( g : ( ZZ  ^m  V ) --> ZZ  /\  et ) )  ->  ( f  oF  x.  g
) : ( ZZ 
^m  V ) --> ZZ )
5251adantl 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  ( f  oF  x.  g
) : ( ZZ 
^m  V ) --> ZZ )
53 mzpindd.mu . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) )  ->  si )
54533expb 1232 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  si )
5547, 52, 54jca32 544 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
f : ( ZZ 
^m  V ) --> ZZ 
/\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) ) )  ->  ( (
( f  oF  +  g ) : ( ZZ  ^m  V
) --> ZZ  /\  ze )  /\  ( ( f  oF  x.  g
) : ( ZZ 
^m  V ) --> ZZ 
/\  si ) ) )
5655ex 441 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( f : ( ZZ  ^m  V ) --> ZZ  /\  ta )  /\  (
g : ( ZZ 
^m  V ) --> ZZ 
/\  et ) )  ->  ( ( ( f  oF  +  g ) : ( ZZ  ^m  V ) --> ZZ  /\  ze )  /\  ( ( f  oF  x.  g ) : ( ZZ  ^m  V ) --> ZZ  /\  si ) ) ) )
578, 7elmap 7518 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  <->  f : ( ZZ  ^m  V ) --> ZZ )
5857anbi1i 709 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  /\  ta )  <->  ( f : ( ZZ  ^m  V
) --> ZZ  /\  ta ) )
598, 7elmap 7518 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  <->  g : ( ZZ  ^m  V ) --> ZZ )
6059anbi1i 709 . . . . . . . . . . . . . 14  |-  ( ( g  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  /\  et )  <->  ( g : ( ZZ  ^m  V
) --> ZZ  /\  et ) )
6158, 60anbi12i 711 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  ta )  /\  ( g  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  et ) )  <-> 
( ( f : ( ZZ  ^m  V
) --> ZZ  /\  ta )  /\  ( g : ( ZZ  ^m  V
) --> ZZ  /\  et ) ) )
628, 7elmap 7518 . . . . . . . . . . . . . . 15  |-  ( ( f  oF  +  g )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  <-> 
( f  oF  +  g ) : ( ZZ  ^m  V
) --> ZZ )
6362anbi1i 709 . . . . . . . . . . . . . 14  |-  ( ( ( f  oF  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ze )  <->  ( (
f  oF  +  g ) : ( ZZ  ^m  V ) --> ZZ  /\  ze )
)
648, 7elmap 7518 . . . . . . . . . . . . . . 15  |-  ( ( f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  <-> 
( f  oF  x.  g ) : ( ZZ  ^m  V
) --> ZZ )
6564anbi1i 709 . . . . . . . . . . . . . 14  |-  ( ( ( f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  si )  <->  ( (
f  oF  x.  g ) : ( ZZ  ^m  V ) --> ZZ  /\  si )
)
6663, 65anbi12i 711 . . . . . . . . . . . . 13  |-  ( ( ( ( f  oF  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ze )  /\  ( ( f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  si )
)  <->  ( ( ( f  oF  +  g ) : ( ZZ  ^m  V ) --> ZZ  /\  ze )  /\  ( ( f  oF  x.  g ) : ( ZZ  ^m  V ) --> ZZ  /\  si ) ) )
6756, 61, 663imtr4g 278 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( f  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ta )  /\  ( g  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  et ) )  ->  ( ( ( f  oF  +  g )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  ze )  /\  ( ( f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  si )
) ) )
68 mzpindd.3 . . . . . . . . . . . . . 14  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
6968elrab 3184 . . . . . . . . . . . . 13  |-  ( f  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( f  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ta ) )
70 mzpindd.4 . . . . . . . . . . . . . 14  |-  ( x  =  g  ->  ( ps 
<->  et ) )
7170elrab 3184 . . . . . . . . . . . . 13  |-  ( g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( g  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  et ) )
7269, 71anbi12i 711 . . . . . . . . . . . 12  |-  ( ( f  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  /\  g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )  <-> 
( ( f  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ta )  /\  ( g  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  et ) ) )
73 mzpindd.5 . . . . . . . . . . . . . 14  |-  ( x  =  ( f  oF  +  g )  ->  ( ps  <->  ze )
)
7473elrab 3184 . . . . . . . . . . . . 13  |-  ( ( f  oF  +  g )  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( (
f  oF  +  g )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  ze ) )
75 mzpindd.6 . . . . . . . . . . . . . 14  |-  ( x  =  ( f  oF  x.  g )  ->  ( ps  <->  si )
)
7675elrab 3184 . . . . . . . . . . . . 13  |-  ( ( f  oF  x.  g )  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( (
f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  /\  si ) )
7774, 76anbi12i 711 . . . . . . . . . . . 12  |-  ( ( ( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } )  <-> 
( ( ( f  oF  +  g )  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  /\  ze )  /\  (
( f  oF  x.  g )  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  si ) ) )
7867, 72, 773imtr4g 278 . . . . . . . . . . 11  |-  ( ph  ->  ( ( f  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )  ->  ( ( f  oF  +  g )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) ) )
7978ralrimivv 2813 . . . . . . . . . 10  |-  ( ph  ->  A. f  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps } A. g  e.  { x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  (
( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) )
8079adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  V  e.  _V )  ->  A. f  e.  { x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } A. g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  (
( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) )
816, 35, 80jca32 544 . . . . . . . 8  |-  ( (
ph  /\  V  e.  _V )  ->  ( { x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )  /\  A. f  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } A. g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  (
( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) ) ) )
82 elmzpcl 35639 . . . . . . . . 9  |-  ( V  e.  _V  ->  ( { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  e.  (mzPolyCld `  V )  <->  ( {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )  /\  A. f  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } A. g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  (
( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) ) ) ) )
8382adantl 473 . . . . . . . 8  |-  ( (
ph  /\  V  e.  _V )  ->  ( { x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  e.  (mzPolyCld `  V )  <->  ( {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )  /\  A. f  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } A. g  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  (
( f  oF  +  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps }  /\  ( f  oF  x.  g )  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } ) ) ) ) )
8481, 83mpbird 240 . . . . . . 7  |-  ( (
ph  /\  V  e.  _V )  ->  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  e.  (mzPolyCld `  V ) )
85 intss1 4241 . . . . . . 7  |-  ( { x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps }  e.  (mzPolyCld `  V )  ->  |^| (mzPolyCld `  V )  C_  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
8684, 85syl 17 . . . . . 6  |-  ( (
ph  /\  V  e.  _V )  ->  |^| (mzPolyCld `  V )  C_  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
874, 86eqsstrd 3452 . . . . 5  |-  ( (
ph  /\  V  e.  _V )  ->  (mzPoly `  V )  C_  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps } )
8887sselda 3418 . . . 4  |-  ( ( ( ph  /\  V  e.  _V )  /\  A  e.  (mzPoly `  V )
)  ->  A  e.  { x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps } )
8988an32s 821 . . 3  |-  ( ( ( ph  /\  A  e.  (mzPoly `  V )
)  /\  V  e.  _V )  ->  A  e. 
{ x  e.  ( ZZ  ^m  ( ZZ 
^m  V ) )  |  ps } )
902, 89mpdan 681 . 2  |-  ( (
ph  /\  A  e.  (mzPoly `  V ) )  ->  A  e.  {
x  e.  ( ZZ 
^m  ( ZZ  ^m  V ) )  |  ps } )
91 mzpindd.7 . . . 4  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
9291elrab 3184 . . 3  |-  ( A  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  <->  ( A  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  rh ) )
9392simprbi 471 . 2  |-  ( A  e.  { x  e.  ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ps }  ->  rh )
9490, 93syl 17 1  |-  ( (
ph  /\  A  e.  (mzPoly `  V ) )  ->  rh )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    C_ wss 3390   {csn 3959   |^|cint 4226    |-> cmpt 4454    X. cxp 4837   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548    ^m cmap 7490    + caddc 9560    x. cmul 9562   ZZcz 10961  mzPolyCldcmzpcl 35634  mzPolycmzp 35635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-mzpcl 35636  df-mzp 35637
This theorem is referenced by:  mzpmfp  35660  mzpsubst  35661  mzpcompact2lem  35664  mzpcong  35893
  Copyright terms: Public domain W3C validator