Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Unicode version

Theorem mzpincl 35028
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl  |-  ( V  e.  _V  ->  (mzPoly `  V )  e.  (mzPolyCld `  V ) )

Proof of Theorem mzpincl
Dummy variables  f 
g  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 35026 . 2  |-  ( V  e.  _V  ->  (mzPoly `  V )  =  |^| (mzPolyCld `  V ) )
2 mzpclall 35021 . . . . 5  |-  ( V  e.  _V  ->  ( ZZ  ^m  ( ZZ  ^m  V ) )  e.  (mzPolyCld `  V )
)
3 intss1 4242 . . . . 5  |-  ( ( ZZ  ^m  ( ZZ 
^m  V ) )  e.  (mzPolyCld `  V )  ->  |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
42, 3syl 17 . . . 4  |-  ( V  e.  _V  ->  |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
5 simpr 459 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
a  e.  (mzPolyCld `  V
) )
6 simplr 754 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
f  e.  ZZ )
7 mzpcl1 35023 . . . . . . . . 9  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { f } )  e.  a )
85, 6, 7syl2anc 659 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
( ( ZZ  ^m  V )  X.  {
f } )  e.  a )
98ralrimiva 2818 . . . . . . 7  |-  ( ( V  e.  _V  /\  f  e.  ZZ )  ->  A. a  e.  (mzPolyCld `  V ) ( ( ZZ  ^m  V )  X.  { f } )  e.  a )
10 ovex 6306 . . . . . . . . 9  |-  ( ZZ 
^m  V )  e. 
_V
11 snex 4632 . . . . . . . . 9  |-  { f }  e.  _V
1210, 11xpex 6586 . . . . . . . 8  |-  ( ( ZZ  ^m  V )  X.  { f } )  e.  _V
1312elint2 4234 . . . . . . 7  |-  ( ( ( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( ( ZZ  ^m  V )  X.  {
f } )  e.  a )
149, 13sylibr 212 . . . . . 6  |-  ( ( V  e.  _V  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  {
f } )  e. 
|^| (mzPolyCld `  V )
)
1514ralrimiva 2818 . . . . 5  |-  ( V  e.  _V  ->  A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  |^| (mzPolyCld `  V )
)
16 simpr 459 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
a  e.  (mzPolyCld `  V
) )
17 simplr 754 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
f  e.  V )
18 mzpcl2 35024 . . . . . . . . 9  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  V )  ->  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  a )
1916, 17, 18syl2anc 659 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  a )
2019ralrimiva 2818 . . . . . . 7  |-  ( ( V  e.  _V  /\  f  e.  V )  ->  A. a  e.  (mzPolyCld `  V ) ( g  e.  ( ZZ  ^m  V )  |->  ( g `
 f ) )  e.  a )
2110mptex 6124 . . . . . . . 8  |-  ( g  e.  ( ZZ  ^m  V )  |->  ( g `
 f ) )  e.  _V
2221elint2 4234 . . . . . . 7  |-  ( ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  a )
2320, 22sylibr 212 . . . . . 6  |-  ( ( V  e.  _V  /\  f  e.  V )  ->  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  |^| (mzPolyCld `  V ) )
2423ralrimiva 2818 . . . . 5  |-  ( V  e.  _V  ->  A. f  e.  V  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  e. 
|^| (mzPolyCld `  V )
)
2515, 24jca 530 . . . 4  |-  ( V  e.  _V  ->  ( A. f  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
f } )  e. 
|^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  |^| (mzPolyCld `  V ) ) )
26 vex 3062 . . . . . . . . 9  |-  f  e. 
_V
2726elint2 4234 . . . . . . . 8  |-  ( f  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V
) f  e.  a )
28 vex 3062 . . . . . . . . 9  |-  g  e. 
_V
2928elint2 4234 . . . . . . . 8  |-  ( g  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V
) g  e.  a )
30 mzpcl34 35025 . . . . . . . . . . 11  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  a  /\  g  e.  a )  ->  ( (
f  oF  +  g )  e.  a  /\  ( f  oF  x.  g )  e.  a ) )
31303expib 1200 . . . . . . . . . 10  |-  ( a  e.  (mzPolyCld `  V )  ->  ( ( f  e.  a  /\  g  e.  a )  ->  (
( f  oF  +  g )  e.  a  /\  ( f  oF  x.  g
)  e.  a ) ) )
3231ralimia 2795 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( f  e.  a  /\  g  e.  a )  ->  A. a  e.  (mzPolyCld `  V )
( ( f  oF  +  g )  e.  a  /\  (
f  oF  x.  g )  e.  a ) )
33 r19.26 2934 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( f  e.  a  /\  g  e.  a )  <->  ( A. a  e.  (mzPolyCld `  V
) f  e.  a  /\  A. a  e.  (mzPolyCld `  V )
g  e.  a ) )
34 r19.26 2934 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( ( f  oF  +  g )  e.  a  /\  ( f  oF  x.  g )  e.  a )  <->  ( A. a  e.  (mzPolyCld `  V
) ( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V
) ( f  oF  x.  g )  e.  a ) )
3532, 33, 343imtr3i 265 . . . . . . . 8  |-  ( ( A. a  e.  (mzPolyCld `  V ) f  e.  a  /\  A. a  e.  (mzPolyCld `  V )
g  e.  a )  ->  ( A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a ) )
3627, 29, 35syl2anb 477 . . . . . . 7  |-  ( ( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V )
)  ->  ( A. a  e.  (mzPolyCld `  V
) ( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V
) ( f  oF  x.  g )  e.  a ) )
37 ovex 6306 . . . . . . . . 9  |-  ( f  oF  +  g )  e.  _V
3837elint2 4234 . . . . . . . 8  |-  ( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a )
39 ovex 6306 . . . . . . . . 9  |-  ( f  oF  x.  g
)  e.  _V
4039elint2 4234 . . . . . . . 8  |-  ( ( f  oF  x.  g )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a )
4138, 40anbi12i 695 . . . . . . 7  |-  ( ( ( f  oF  +  g )  e. 
|^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
)  <->  ( A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a ) )
4236, 41sylibr 212 . . . . . 6  |-  ( ( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V )
)  ->  ( (
f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) )
4342a1i 11 . . . . 5  |-  ( V  e.  _V  ->  (
( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V
) )  ->  (
( f  oF  +  g )  e. 
|^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) )
4443ralrimivv 2824 . . . 4  |-  ( V  e.  _V  ->  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V ) ( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) )
454, 25, 44jca32 533 . . 3  |-  ( V  e.  _V  ->  ( |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V ) )  /\  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V )
( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) ) )
46 elmzpcl 35020 . . 3  |-  ( V  e.  _V  ->  ( |^| (mzPolyCld `  V )  e.  (mzPolyCld `  V )  <->  (
|^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V ) )  /\  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V )
( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) ) ) )
4745, 46mpbird 232 . 2  |-  ( V  e.  _V  ->  |^| (mzPolyCld `  V )  e.  (mzPolyCld `  V ) )
481, 47eqeltrd 2490 1  |-  ( V  e.  _V  ->  (mzPoly `  V )  e.  (mzPolyCld `  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1842   A.wral 2754   _Vcvv 3059    C_ wss 3414   {csn 3972   |^|cint 4227    |-> cmpt 4453    X. cxp 4821   ` cfv 5569  (class class class)co 6278    oFcof 6519    ^m cmap 7457    + caddc 9525    x. cmul 9527   ZZcz 10905  mzPolyCldcmzpcl 35015  mzPolycmzp 35016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-mzpcl 35017  df-mzp 35018
This theorem is referenced by:  mzpconst  35029  mzpproj  35031  mzpadd  35032  mzpmul  35033
  Copyright terms: Public domain W3C validator