Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpincl Structured version   Unicode version

Theorem mzpincl 30257
Description: Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpincl  |-  ( V  e.  _V  ->  (mzPoly `  V )  e.  (mzPolyCld `  V ) )

Proof of Theorem mzpincl
Dummy variables  f 
g  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpval 30255 . 2  |-  ( V  e.  _V  ->  (mzPoly `  V )  =  |^| (mzPolyCld `  V ) )
2 mzpclall 30250 . . . . 5  |-  ( V  e.  _V  ->  ( ZZ  ^m  ( ZZ  ^m  V ) )  e.  (mzPolyCld `  V )
)
3 intss1 4290 . . . . 5  |-  ( ( ZZ  ^m  ( ZZ 
^m  V ) )  e.  (mzPolyCld `  V )  ->  |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
42, 3syl 16 . . . 4  |-  ( V  e.  _V  ->  |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
5 simpr 461 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
a  e.  (mzPolyCld `  V
) )
6 simplr 754 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
f  e.  ZZ )
7 mzpcl1 30252 . . . . . . . . 9  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { f } )  e.  a )
85, 6, 7syl2anc 661 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  f  e.  ZZ )  /\  a  e.  (mzPolyCld `  V ) )  -> 
( ( ZZ  ^m  V )  X.  {
f } )  e.  a )
98ralrimiva 2871 . . . . . . 7  |-  ( ( V  e.  _V  /\  f  e.  ZZ )  ->  A. a  e.  (mzPolyCld `  V ) ( ( ZZ  ^m  V )  X.  { f } )  e.  a )
10 ovex 6300 . . . . . . . . 9  |-  ( ZZ 
^m  V )  e. 
_V
11 snex 4681 . . . . . . . . 9  |-  { f }  e.  _V
1210, 11xpex 6704 . . . . . . . 8  |-  ( ( ZZ  ^m  V )  X.  { f } )  e.  _V
1312elint2 4282 . . . . . . 7  |-  ( ( ( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( ( ZZ  ^m  V )  X.  {
f } )  e.  a )
149, 13sylibr 212 . . . . . 6  |-  ( ( V  e.  _V  /\  f  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  {
f } )  e. 
|^| (mzPolyCld `  V )
)
1514ralrimiva 2871 . . . . 5  |-  ( V  e.  _V  ->  A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  |^| (mzPolyCld `  V )
)
16 simpr 461 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
a  e.  (mzPolyCld `  V
) )
17 simplr 754 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
f  e.  V )
18 mzpcl2 30253 . . . . . . . . 9  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  V )  ->  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  a )
1916, 17, 18syl2anc 661 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  f  e.  V )  /\  a  e.  (mzPolyCld `  V ) )  -> 
( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  a )
2019ralrimiva 2871 . . . . . . 7  |-  ( ( V  e.  _V  /\  f  e.  V )  ->  A. a  e.  (mzPolyCld `  V ) ( g  e.  ( ZZ  ^m  V )  |->  ( g `
 f ) )  e.  a )
2110mptex 6122 . . . . . . . 8  |-  ( g  e.  ( ZZ  ^m  V )  |->  ( g `
 f ) )  e.  _V
2221elint2 4282 . . . . . . 7  |-  ( ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  a )
2320, 22sylibr 212 . . . . . 6  |-  ( ( V  e.  _V  /\  f  e.  V )  ->  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  |^| (mzPolyCld `  V ) )
2423ralrimiva 2871 . . . . 5  |-  ( V  e.  _V  ->  A. f  e.  V  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  e. 
|^| (mzPolyCld `  V )
)
2515, 24jca 532 . . . 4  |-  ( V  e.  _V  ->  ( A. f  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
f } )  e. 
|^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  |^| (mzPolyCld `  V ) ) )
26 vex 3109 . . . . . . . . 9  |-  f  e. 
_V
2726elint2 4282 . . . . . . . 8  |-  ( f  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V
) f  e.  a )
28 vex 3109 . . . . . . . . 9  |-  g  e. 
_V
2928elint2 4282 . . . . . . . 8  |-  ( g  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V
) g  e.  a )
30 mzpcl34 30254 . . . . . . . . . . 11  |-  ( ( a  e.  (mzPolyCld `  V
)  /\  f  e.  a  /\  g  e.  a )  ->  ( (
f  oF  +  g )  e.  a  /\  ( f  oF  x.  g )  e.  a ) )
31303expib 1194 . . . . . . . . . 10  |-  ( a  e.  (mzPolyCld `  V )  ->  ( ( f  e.  a  /\  g  e.  a )  ->  (
( f  oF  +  g )  e.  a  /\  ( f  oF  x.  g
)  e.  a ) ) )
3231ralimia 2848 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( f  e.  a  /\  g  e.  a )  ->  A. a  e.  (mzPolyCld `  V )
( ( f  oF  +  g )  e.  a  /\  (
f  oF  x.  g )  e.  a ) )
33 r19.26 2982 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( f  e.  a  /\  g  e.  a )  <->  ( A. a  e.  (mzPolyCld `  V
) f  e.  a  /\  A. a  e.  (mzPolyCld `  V )
g  e.  a ) )
34 r19.26 2982 . . . . . . . . 9  |-  ( A. a  e.  (mzPolyCld `  V
) ( ( f  oF  +  g )  e.  a  /\  ( f  oF  x.  g )  e.  a )  <->  ( A. a  e.  (mzPolyCld `  V
) ( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V
) ( f  oF  x.  g )  e.  a ) )
3532, 33, 343imtr3i 265 . . . . . . . 8  |-  ( ( A. a  e.  (mzPolyCld `  V ) f  e.  a  /\  A. a  e.  (mzPolyCld `  V )
g  e.  a )  ->  ( A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a ) )
3627, 29, 35syl2anb 479 . . . . . . 7  |-  ( ( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V )
)  ->  ( A. a  e.  (mzPolyCld `  V
) ( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V
) ( f  oF  x.  g )  e.  a ) )
37 ovex 6300 . . . . . . . . 9  |-  ( f  oF  +  g )  e.  _V
3837elint2 4282 . . . . . . . 8  |-  ( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a )
39 ovex 6300 . . . . . . . . 9  |-  ( f  oF  x.  g
)  e.  _V
4039elint2 4282 . . . . . . . 8  |-  ( ( f  oF  x.  g )  e.  |^| (mzPolyCld `  V )  <->  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a )
4138, 40anbi12i 697 . . . . . . 7  |-  ( ( ( f  oF  +  g )  e. 
|^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
)  <->  ( A. a  e.  (mzPolyCld `  V )
( f  oF  +  g )  e.  a  /\  A. a  e.  (mzPolyCld `  V )
( f  oF  x.  g )  e.  a ) )
4236, 41sylibr 212 . . . . . 6  |-  ( ( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V )
)  ->  ( (
f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) )
4342a1i 11 . . . . 5  |-  ( V  e.  _V  ->  (
( f  e.  |^| (mzPolyCld `  V )  /\  g  e.  |^| (mzPolyCld `  V
) )  ->  (
( f  oF  +  g )  e. 
|^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) )
4443ralrimivv 2877 . . . 4  |-  ( V  e.  _V  ->  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V ) ( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) )
454, 25, 44jca32 535 . . 3  |-  ( V  e.  _V  ->  ( |^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V ) )  /\  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V )
( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) ) )
46 elmzpcl 30249 . . 3  |-  ( V  e.  _V  ->  ( |^| (mzPolyCld `  V )  e.  (mzPolyCld `  V )  <->  (
|^| (mzPolyCld `  V )  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  |^| (mzPolyCld `  V )  /\  A. f  e.  V  ( g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  |^| (mzPolyCld `  V ) )  /\  A. f  e.  |^| (mzPolyCld `  V ) A. g  e.  |^| (mzPolyCld `  V )
( ( f  oF  +  g )  e.  |^| (mzPolyCld `  V )  /\  ( f  oF  x.  g )  e. 
|^| (mzPolyCld `  V )
) ) ) ) )
4745, 46mpbird 232 . 2  |-  ( V  e.  _V  ->  |^| (mzPolyCld `  V )  e.  (mzPolyCld `  V ) )
481, 47eqeltrd 2548 1  |-  ( V  e.  _V  ->  (mzPoly `  V )  e.  (mzPolyCld `  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762   A.wral 2807   _Vcvv 3106    C_ wss 3469   {csn 4020   |^|cint 4275    |-> cmpt 4498    X. cxp 4990   ` cfv 5579  (class class class)co 6275    oFcof 6513    ^m cmap 7410    + caddc 9484    x. cmul 9486   ZZcz 10853  mzPolyCldcmzpcl 30244  mzPolycmzp 30245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-mzpcl 30246  df-mzp 30247
This theorem is referenced by:  mzpconst  30258  mzpproj  30260  mzpadd  30261  mzpmul  30262
  Copyright terms: Public domain W3C validator