Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcong Structured version   Unicode version

Theorem mzpcong 35271
Description: Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpcong  |-  ( ( F  e.  (mzPoly `  V )  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V
) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  ->  N  ||  ( ( F `
 X )  -  ( F `  Y ) ) )
Distinct variable groups:    k, X    k, V    k, Y    k, N
Allowed substitution hint:    F( k)

Proof of Theorem mzpcong
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5876 . . 3  |-  ( F  e.  (mzPoly `  V
)  ->  V  e.  _V )
213anim1i 1183 . 2  |-  ( ( F  e.  (mzPoly `  V )  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V
) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  -> 
( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) ) )
3 simp1 997 . 2  |-  ( ( F  e.  (mzPoly `  V )  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V
) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  ->  F  e.  (mzPoly `  V
) )
4 simpl3l 1052 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  N  e.  ZZ )
5 simpr 459 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  b  e.  ZZ )
6 congid 35270 . . . . 5  |-  ( ( N  e.  ZZ  /\  b  e.  ZZ )  ->  N  ||  ( b  -  b ) )
74, 5, 6syl2anc 659 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  N  ||  ( b  -  b ) )
8 simpl2l 1050 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  X  e.  ( ZZ 
^m  V ) )
9 vex 3062 . . . . . . 7  |-  b  e. 
_V
109fvconst2 6107 . . . . . 6  |-  ( X  e.  ( ZZ  ^m  V )  ->  (
( ( ZZ  ^m  V )  X.  {
b } ) `  X )  =  b )
118, 10syl 17 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  ( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 X )  =  b )
12 simpl2r 1051 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  Y  e.  ( ZZ 
^m  V ) )
139fvconst2 6107 . . . . . 6  |-  ( Y  e.  ( ZZ  ^m  V )  ->  (
( ( ZZ  ^m  V )  X.  {
b } ) `  Y )  =  b )
1412, 13syl 17 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  ( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 Y )  =  b )
1511, 14oveq12d 6296 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  ( ( ( ( ZZ  ^m  V )  X.  { b } ) `  X )  -  ( ( ( ZZ  ^m  V )  X.  { b } ) `  Y ) )  =  ( b  -  b ) )
167, 15breqtrrd 4421 . . 3  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  ZZ )  ->  N  ||  ( ( ( ( ZZ  ^m  V )  X.  {
b } ) `  X )  -  (
( ( ZZ  ^m  V )  X.  {
b } ) `  Y ) ) )
17 simpr 459 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  b  e.  V )
18 simpl3r 1053 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  A. k  e.  V  N  ||  ( ( X `
 k )  -  ( Y `  k ) ) )
19 fveq2 5849 . . . . . . . 8  |-  ( k  =  b  ->  ( X `  k )  =  ( X `  b ) )
20 fveq2 5849 . . . . . . . 8  |-  ( k  =  b  ->  ( Y `  k )  =  ( Y `  b ) )
2119, 20oveq12d 6296 . . . . . . 7  |-  ( k  =  b  ->  (
( X `  k
)  -  ( Y `
 k ) )  =  ( ( X `
 b )  -  ( Y `  b ) ) )
2221breq2d 4407 . . . . . 6  |-  ( k  =  b  ->  ( N  ||  ( ( X `
 k )  -  ( Y `  k ) )  <->  N  ||  ( ( X `  b )  -  ( Y `  b ) ) ) )
2322rspcva 3158 . . . . 5  |-  ( ( b  e.  V  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) )  ->  N  ||  ( ( X `  b )  -  ( Y `  b )
) )
2417, 18, 23syl2anc 659 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  N  ||  ( ( X `  b )  -  ( Y `  b ) ) )
25 simpl2l 1050 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  X  e.  ( ZZ 
^m  V ) )
26 fveq1 5848 . . . . . . 7  |-  ( c  =  X  ->  (
c `  b )  =  ( X `  b ) )
27 eqid 2402 . . . . . . 7  |-  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) )  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )
28 fvex 5859 . . . . . . 7  |-  ( X `
 b )  e. 
_V
2926, 27, 28fvmpt 5932 . . . . . 6  |-  ( X  e.  ( ZZ  ^m  V )  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  X
)  =  ( X `
 b ) )
3025, 29syl 17 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  ( ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) ) `  X )  =  ( X `  b ) )
31 simpl2r 1051 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  Y  e.  ( ZZ 
^m  V ) )
32 fveq1 5848 . . . . . . 7  |-  ( c  =  Y  ->  (
c `  b )  =  ( Y `  b ) )
33 fvex 5859 . . . . . . 7  |-  ( Y `
 b )  e. 
_V
3432, 27, 33fvmpt 5932 . . . . . 6  |-  ( Y  e.  ( ZZ  ^m  V )  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  Y
)  =  ( Y `
 b ) )
3531, 34syl 17 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  ( ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) ) `  Y )  =  ( Y `  b ) )
3630, 35oveq12d 6296 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  ( ( ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) `
 X )  -  ( ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) ) `  Y ) )  =  ( ( X `  b )  -  ( Y `  b )
) )
3724, 36breqtrrd 4421 . . 3  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  b  e.  V )  ->  N  ||  ( ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  X
)  -  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) ) `  Y ) ) )
38 simp13l 1112 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  e.  ZZ )
39 simp2l 1023 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  b : ( ZZ  ^m  V ) --> ZZ )
40 simp12l 1110 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  X  e.  ( ZZ  ^m  V
) )
4139, 40ffvelrnd 6010 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
b `  X )  e.  ZZ )
42 simp12r 1111 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  Y  e.  ( ZZ  ^m  V
) )
4339, 42ffvelrnd 6010 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
b `  Y )  e.  ZZ )
44 simp3l 1025 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  c : ( ZZ  ^m  V ) --> ZZ )
4544, 40ffvelrnd 6010 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
c `  X )  e.  ZZ )
4644, 42ffvelrnd 6010 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
c `  Y )  e.  ZZ )
47 simp2r 1024 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( b `  X )  -  (
b `  Y )
) )
48 simp3r 1026 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( c `  X )  -  (
c `  Y )
) )
49 congadd 35265 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  ( b `  X
)  e.  ZZ  /\  ( b `  Y
)  e.  ZZ )  /\  ( ( c `
 X )  e.  ZZ  /\  ( c `
 Y )  e.  ZZ )  /\  ( N  ||  ( ( b `
 X )  -  ( b `  Y
) )  /\  N  ||  ( ( c `  X )  -  (
c `  Y )
) ) )  ->  N  ||  ( ( ( b `  X )  +  ( c `  X ) )  -  ( ( b `  Y )  +  ( c `  Y ) ) ) )
5038, 41, 43, 45, 46, 47, 48, 49syl322anc 1258 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( ( b `
 X )  +  ( c `  X
) )  -  (
( b `  Y
)  +  ( c `
 Y ) ) ) )
51 ffn 5714 . . . . . . 7  |-  ( b : ( ZZ  ^m  V ) --> ZZ  ->  b  Fn  ( ZZ  ^m  V ) )
5239, 51syl 17 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  b  Fn  ( ZZ  ^m  V
) )
53 ffn 5714 . . . . . . 7  |-  ( c : ( ZZ  ^m  V ) --> ZZ  ->  c  Fn  ( ZZ  ^m  V ) )
5444, 53syl 17 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  c  Fn  ( ZZ  ^m  V
) )
55 ovex 6306 . . . . . . 7  |-  ( ZZ 
^m  V )  e. 
_V
5655a1i 11 . . . . . 6  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  ( ZZ  ^m  V )  e. 
_V )
57 fnfvof 6535 . . . . . 6  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  X  e.  ( ZZ 
^m  V ) ) )  ->  ( (
b  oF  +  c ) `  X
)  =  ( ( b `  X )  +  ( c `  X ) ) )
5852, 54, 56, 40, 57syl22anc 1231 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( b  oF  +  c ) `  X )  =  ( ( b `  X
)  +  ( c `
 X ) ) )
59 fnfvof 6535 . . . . . 6  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  Y  e.  ( ZZ 
^m  V ) ) )  ->  ( (
b  oF  +  c ) `  Y
)  =  ( ( b `  Y )  +  ( c `  Y ) ) )
6052, 54, 56, 42, 59syl22anc 1231 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( b  oF  +  c ) `  Y )  =  ( ( b `  Y
)  +  ( c `
 Y ) ) )
6158, 60oveq12d 6296 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( ( b  oF  +  c ) `
 X )  -  ( ( b  oF  +  c ) `
 Y ) )  =  ( ( ( b `  X )  +  ( c `  X ) )  -  ( ( b `  Y )  +  ( c `  Y ) ) ) )
6250, 61breqtrrd 4421 . . 3  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( ( b  oF  +  c ) `  X )  -  ( ( b  oF  +  c ) `  Y ) ) )
63 congmul 35266 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  ( b `  X
)  e.  ZZ  /\  ( b `  Y
)  e.  ZZ )  /\  ( ( c `
 X )  e.  ZZ  /\  ( c `
 Y )  e.  ZZ )  /\  ( N  ||  ( ( b `
 X )  -  ( b `  Y
) )  /\  N  ||  ( ( c `  X )  -  (
c `  Y )
) ) )  ->  N  ||  ( ( ( b `  X )  x.  ( c `  X ) )  -  ( ( b `  Y )  x.  (
c `  Y )
) ) )
6438, 41, 43, 45, 46, 47, 48, 63syl322anc 1258 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( ( b `
 X )  x.  ( c `  X
) )  -  (
( b `  Y
)  x.  ( c `
 Y ) ) ) )
65 fnfvof 6535 . . . . . 6  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  X  e.  ( ZZ 
^m  V ) ) )  ->  ( (
b  oF  x.  c ) `  X
)  =  ( ( b `  X )  x.  ( c `  X ) ) )
6652, 54, 56, 40, 65syl22anc 1231 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( b  oF  x.  c ) `  X )  =  ( ( b `  X
)  x.  ( c `
 X ) ) )
67 fnfvof 6535 . . . . . 6  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  Y  e.  ( ZZ 
^m  V ) ) )  ->  ( (
b  oF  x.  c ) `  Y
)  =  ( ( b `  Y )  x.  ( c `  Y ) ) )
6852, 54, 56, 42, 67syl22anc 1231 . . . . 5  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( b  oF  x.  c ) `  Y )  =  ( ( b `  Y
)  x.  ( c `
 Y ) ) )
6966, 68oveq12d 6296 . . . 4  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  (
( ( b  oF  x.  c ) `
 X )  -  ( ( b  oF  x.  c ) `
 Y ) )  =  ( ( ( b `  X )  x.  ( c `  X ) )  -  ( ( b `  Y )  x.  (
c `  Y )
) ) )
7064, 69breqtrrd 4421 . . 3  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  N  ||  ( ( b `  X )  -  (
b `  Y )
) )  /\  (
c : ( ZZ 
^m  V ) --> ZZ 
/\  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )  ->  N  ||  ( ( ( b  oF  x.  c
) `  X )  -  ( ( b  oF  x.  c
) `  Y )
) )
71 fveq1 5848 . . . . 5  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( a `  X )  =  ( ( ( ZZ  ^m  V )  X.  {
b } ) `  X ) )
72 fveq1 5848 . . . . 5  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( a `  Y )  =  ( ( ( ZZ  ^m  V )  X.  {
b } ) `  Y ) )
7371, 72oveq12d 6296 . . . 4  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( ( a `
 X )  -  ( a `  Y
) )  =  ( ( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 X )  -  ( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 Y ) ) )
7473breq2d 4407 . . 3  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( N  ||  ( ( a `  X )  -  (
a `  Y )
)  <->  N  ||  ( ( ( ( ZZ  ^m  V )  X.  {
b } ) `  X )  -  (
( ( ZZ  ^m  V )  X.  {
b } ) `  Y ) ) ) )
75 fveq1 5848 . . . . 5  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( a `  X
)  =  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) ) `  X ) )
76 fveq1 5848 . . . . 5  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( a `  Y
)  =  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) ) `  Y ) )
7775, 76oveq12d 6296 . . . 4  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( ( a `  X )  -  (
a `  Y )
)  =  ( ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  X
)  -  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) ) `  Y ) ) )
7877breq2d 4407 . . 3  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( N  ||  (
( a `  X
)  -  ( a `
 Y ) )  <-> 
N  ||  ( (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  X
)  -  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) ) `  Y ) ) ) )
79 fveq1 5848 . . . . 5  |-  ( a  =  b  ->  (
a `  X )  =  ( b `  X ) )
80 fveq1 5848 . . . . 5  |-  ( a  =  b  ->  (
a `  Y )  =  ( b `  Y ) )
8179, 80oveq12d 6296 . . . 4  |-  ( a  =  b  ->  (
( a `  X
)  -  ( a `
 Y ) )  =  ( ( b `
 X )  -  ( b `  Y
) ) )
8281breq2d 4407 . . 3  |-  ( a  =  b  ->  ( N  ||  ( ( a `
 X )  -  ( a `  Y
) )  <->  N  ||  (
( b `  X
)  -  ( b `
 Y ) ) ) )
83 fveq1 5848 . . . . 5  |-  ( a  =  c  ->  (
a `  X )  =  ( c `  X ) )
84 fveq1 5848 . . . . 5  |-  ( a  =  c  ->  (
a `  Y )  =  ( c `  Y ) )
8583, 84oveq12d 6296 . . . 4  |-  ( a  =  c  ->  (
( a `  X
)  -  ( a `
 Y ) )  =  ( ( c `
 X )  -  ( c `  Y
) ) )
8685breq2d 4407 . . 3  |-  ( a  =  c  ->  ( N  ||  ( ( a `
 X )  -  ( a `  Y
) )  <->  N  ||  (
( c `  X
)  -  ( c `
 Y ) ) ) )
87 fveq1 5848 . . . . 5  |-  ( a  =  ( b  oF  +  c )  ->  ( a `  X )  =  ( ( b  oF  +  c ) `  X ) )
88 fveq1 5848 . . . . 5  |-  ( a  =  ( b  oF  +  c )  ->  ( a `  Y )  =  ( ( b  oF  +  c ) `  Y ) )
8987, 88oveq12d 6296 . . . 4  |-  ( a  =  ( b  oF  +  c )  ->  ( ( a `
 X )  -  ( a `  Y
) )  =  ( ( ( b  oF  +  c ) `
 X )  -  ( ( b  oF  +  c ) `
 Y ) ) )
9089breq2d 4407 . . 3  |-  ( a  =  ( b  oF  +  c )  ->  ( N  ||  ( ( a `  X )  -  (
a `  Y )
)  <->  N  ||  ( ( ( b  oF  +  c ) `  X )  -  (
( b  oF  +  c ) `  Y ) ) ) )
91 fveq1 5848 . . . . 5  |-  ( a  =  ( b  oF  x.  c )  ->  ( a `  X )  =  ( ( b  oF  x.  c ) `  X ) )
92 fveq1 5848 . . . . 5  |-  ( a  =  ( b  oF  x.  c )  ->  ( a `  Y )  =  ( ( b  oF  x.  c ) `  Y ) )
9391, 92oveq12d 6296 . . . 4  |-  ( a  =  ( b  oF  x.  c )  ->  ( ( a `
 X )  -  ( a `  Y
) )  =  ( ( ( b  oF  x.  c ) `
 X )  -  ( ( b  oF  x.  c ) `
 Y ) ) )
9493breq2d 4407 . . 3  |-  ( a  =  ( b  oF  x.  c )  ->  ( N  ||  ( ( a `  X )  -  (
a `  Y )
)  <->  N  ||  ( ( ( b  oF  x.  c ) `  X )  -  (
( b  oF  x.  c ) `  Y ) ) ) )
95 fveq1 5848 . . . . 5  |-  ( a  =  F  ->  (
a `  X )  =  ( F `  X ) )
96 fveq1 5848 . . . . 5  |-  ( a  =  F  ->  (
a `  Y )  =  ( F `  Y ) )
9795, 96oveq12d 6296 . . . 4  |-  ( a  =  F  ->  (
( a `  X
)  -  ( a `
 Y ) )  =  ( ( F `
 X )  -  ( F `  Y ) ) )
9897breq2d 4407 . . 3  |-  ( a  =  F  ->  ( N  ||  ( ( a `
 X )  -  ( a `  Y
) )  <->  N  ||  (
( F `  X
)  -  ( F `
 Y ) ) ) )
9916, 37, 62, 70, 74, 78, 82, 86, 90, 94, 98mzpindd 35040 . 2  |-  ( ( ( V  e.  _V  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V ) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  /\  F  e.  (mzPoly `  V
) )  ->  N  ||  ( ( F `  X )  -  ( F `  Y )
) )
1002, 3, 99syl2anc 659 1  |-  ( ( F  e.  (mzPoly `  V )  /\  ( X  e.  ( ZZ  ^m  V )  /\  Y  e.  ( ZZ  ^m  V
) )  /\  ( N  e.  ZZ  /\  A. k  e.  V  N  ||  ( ( X `  k )  -  ( Y `  k )
) ) )  ->  N  ||  ( ( F `
 X )  -  ( F `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754   _Vcvv 3059   {csn 3972   class class class wbr 4395    |-> cmpt 4453    X. cxp 4821    Fn wfn 5564   -->wf 5565   ` cfv 5569  (class class class)co 6278    oFcof 6519    ^m cmap 7457    + caddc 9525    x. cmul 9527    - cmin 9841   ZZcz 10905    || cdvds 14195  mzPolycmzp 35016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-dvds 14196  df-mzpcl 35017  df-mzp 35018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator