Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Unicode version

Theorem mzpclval 29204
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
Distinct variable groups:    V, p, f, g    i, V, p   
j, V, x, p

Proof of Theorem mzpclval
Dummy variables  v 
a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6203 . . . . 5  |-  ( v  =  V  ->  ( ZZ  ^m  v )  =  ( ZZ  ^m  V
) )
21oveq2d 6211 . . . 4  |-  ( v  =  V  ->  ( ZZ  ^m  ( ZZ  ^m  v ) )  =  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
32pweqd 3968 . . 3  |-  ( v  =  V  ->  ~P ( ZZ  ^m  ( ZZ  ^m  v ) )  =  ~P ( ZZ 
^m  ( ZZ  ^m  V ) ) )
41xpeq1d 4966 . . . . . . . 8  |-  ( v  =  V  ->  (
( ZZ  ^m  v
)  X.  { a } )  =  ( ( ZZ  ^m  V
)  X.  { a } ) )
54eleq1d 2521 . . . . . . 7  |-  ( v  =  V  ->  (
( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ a } )  e.  p ) )
65ralbidv 2843 . . . . . 6  |-  ( v  =  V  ->  ( A. a  e.  ZZ  ( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  A. a  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
a } )  e.  p ) )
7 sneq 3990 . . . . . . . . 9  |-  ( a  =  i  ->  { a }  =  { i } )
87xpeq2d 4967 . . . . . . . 8  |-  ( a  =  i  ->  (
( ZZ  ^m  V
)  X.  { a } )  =  ( ( ZZ  ^m  V
)  X.  { i } ) )
98eleq1d 2521 . . . . . . 7  |-  ( a  =  i  ->  (
( ( ZZ  ^m  V )  X.  {
a } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p ) )
109cbvralv 3047 . . . . . 6  |-  ( A. a  e.  ZZ  (
( ZZ  ^m  V
)  X.  { a } )  e.  p  <->  A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  p
)
116, 10syl6bb 261 . . . . 5  |-  ( v  =  V  ->  ( A. a  e.  ZZ  ( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p ) )
121mpteq1d 4476 . . . . . . . 8  |-  ( v  =  V  ->  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  =  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) )
1312eleq1d 2521 . . . . . . 7  |-  ( v  =  V  ->  (
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p ) )
1413raleqbi1dv 3025 . . . . . 6  |-  ( v  =  V  ->  ( A. b  e.  v 
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  A. b  e.  V  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p ) )
15 fveq2 5794 . . . . . . . . . 10  |-  ( b  =  j  ->  (
c `  b )  =  ( c `  j ) )
1615mpteq2dv 4482 . . . . . . . . 9  |-  ( b  =  j  ->  (
c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  =  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 j ) ) )
1716eleq1d 2521 . . . . . . . 8  |-  ( b  =  j  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) )  e.  p  <->  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  j ) )  e.  p ) )
18 fveq1 5793 . . . . . . . . . 10  |-  ( c  =  x  ->  (
c `  j )  =  ( x `  j ) )
1918cbvmptv 4486 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 j ) )  =  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )
2019eleq1i 2529 . . . . . . . 8  |-  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  j ) )  e.  p  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )
2117, 20syl6bb 261 . . . . . . 7  |-  ( b  =  j  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) )  e.  p  <->  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) )
2221cbvralv 3047 . . . . . 6  |-  ( A. b  e.  V  (
c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )
2314, 22syl6bb 261 . . . . 5  |-  ( v  =  V  ->  ( A. b  e.  v 
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) )
2411, 23anbi12d 710 . . . 4  |-  ( v  =  V  ->  (
( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  <-> 
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) ) )
2524anbi1d 704 . . 3  |-  ( v  =  V  ->  (
( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) )  <->  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) ) )
263, 25rabeqbidv 3067 . 2  |-  ( v  =  V  ->  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  v
) )  |  ( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) }  =  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) } )
27 df-mzpcl 29202 . 2  |- mzPolyCld  =  ( v  e.  _V  |->  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  v ) )  |  ( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
28 ovex 6220 . . . 4  |-  ( ZZ 
^m  ( ZZ  ^m  V ) )  e. 
_V
2928pwex 4578 . . 3  |-  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  e. 
_V
3029rabex 4546 . 2  |-  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  e.  _V
3126, 27, 30fvmpt 5878 1  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   {crab 2800   _Vcvv 3072   ~Pcpw 3963   {csn 3980    |-> cmpt 4453    X. cxp 4941   ` cfv 5521  (class class class)co 6195    oFcof 6423    ^m cmap 7319    + caddc 9391    x. cmul 9393   ZZcz 10752  mzPolyCldcmzpcl 29200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-sbc 3289  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-iota 5484  df-fun 5523  df-fv 5529  df-ov 6198  df-mzpcl 29202
This theorem is referenced by:  elmzpcl  29205
  Copyright terms: Public domain W3C validator