Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Unicode version

Theorem mzpclval 30862
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
Distinct variable groups:    V, p, f, g    i, V, p   
j, V, x, p

Proof of Theorem mzpclval
Dummy variables  v 
a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6304 . . . . 5  |-  ( v  =  V  ->  ( ZZ  ^m  v )  =  ( ZZ  ^m  V
) )
21oveq2d 6312 . . . 4  |-  ( v  =  V  ->  ( ZZ  ^m  ( ZZ  ^m  v ) )  =  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
32pweqd 4020 . . 3  |-  ( v  =  V  ->  ~P ( ZZ  ^m  ( ZZ  ^m  v ) )  =  ~P ( ZZ 
^m  ( ZZ  ^m  V ) ) )
41xpeq1d 5031 . . . . . . . 8  |-  ( v  =  V  ->  (
( ZZ  ^m  v
)  X.  { a } )  =  ( ( ZZ  ^m  V
)  X.  { a } ) )
54eleq1d 2526 . . . . . . 7  |-  ( v  =  V  ->  (
( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ a } )  e.  p ) )
65ralbidv 2896 . . . . . 6  |-  ( v  =  V  ->  ( A. a  e.  ZZ  ( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  A. a  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
a } )  e.  p ) )
7 sneq 4042 . . . . . . . . 9  |-  ( a  =  i  ->  { a }  =  { i } )
87xpeq2d 5032 . . . . . . . 8  |-  ( a  =  i  ->  (
( ZZ  ^m  V
)  X.  { a } )  =  ( ( ZZ  ^m  V
)  X.  { i } ) )
98eleq1d 2526 . . . . . . 7  |-  ( a  =  i  ->  (
( ( ZZ  ^m  V )  X.  {
a } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p ) )
109cbvralv 3084 . . . . . 6  |-  ( A. a  e.  ZZ  (
( ZZ  ^m  V
)  X.  { a } )  e.  p  <->  A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  p
)
116, 10syl6bb 261 . . . . 5  |-  ( v  =  V  ->  ( A. a  e.  ZZ  ( ( ZZ  ^m  v )  X.  {
a } )  e.  p  <->  A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p ) )
121mpteq1d 4538 . . . . . . . 8  |-  ( v  =  V  ->  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  =  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) )
1312eleq1d 2526 . . . . . . 7  |-  ( v  =  V  ->  (
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p ) )
1413raleqbi1dv 3062 . . . . . 6  |-  ( v  =  V  ->  ( A. b  e.  v 
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  A. b  e.  V  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p ) )
15 fveq2 5872 . . . . . . . . . 10  |-  ( b  =  j  ->  (
c `  b )  =  ( c `  j ) )
1615mpteq2dv 4544 . . . . . . . . 9  |-  ( b  =  j  ->  (
c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  =  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 j ) ) )
1716eleq1d 2526 . . . . . . . 8  |-  ( b  =  j  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) )  e.  p  <->  ( c  e.  ( ZZ 
^m  V )  |->  ( c `  j ) )  e.  p ) )
18 fveq1 5871 . . . . . . . . . 10  |-  ( c  =  x  ->  (
c `  j )  =  ( x `  j ) )
1918cbvmptv 4548 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 j ) )  =  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )
2019eleq1i 2534 . . . . . . . 8  |-  ( ( c  e.  ( ZZ 
^m  V )  |->  ( c `  j ) )  e.  p  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )
2117, 20syl6bb 261 . . . . . . 7  |-  ( b  =  j  ->  (
( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) )  e.  p  <->  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) )
2221cbvralv 3084 . . . . . 6  |-  ( A. b  e.  V  (
c  e.  ( ZZ 
^m  V )  |->  ( c `  b ) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )
2314, 22syl6bb 261 . . . . 5  |-  ( v  =  V  ->  ( A. b  e.  v 
( c  e.  ( ZZ  ^m  v ) 
|->  ( c `  b
) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) )
2411, 23anbi12d 710 . . . 4  |-  ( v  =  V  ->  (
( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  <-> 
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p ) ) )
2524anbi1d 704 . . 3  |-  ( v  =  V  ->  (
( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) )  <->  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) ) )
263, 25rabeqbidv 3104 . 2  |-  ( v  =  V  ->  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  v
) )  |  ( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) }  =  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) } )
27 df-mzpcl 30860 . 2  |- mzPolyCld  =  ( v  e.  _V  |->  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  v ) )  |  ( ( A. a  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ a } )  e.  p  /\  A. b  e.  v  (
c  e.  ( ZZ 
^m  v )  |->  ( c `  b ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
28 ovex 6324 . . . 4  |-  ( ZZ 
^m  ( ZZ  ^m  V ) )  e. 
_V
2928pwex 4639 . . 3  |-  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  e. 
_V
3029rabex 4607 . 2  |-  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  e.  _V
3126, 27, 30fvmpt 5956 1  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109   ~Pcpw 4015   {csn 4032    |-> cmpt 4515    X. cxp 5006   ` cfv 5594  (class class class)co 6296    oFcof 6537    ^m cmap 7438    + caddc 9512    x. cmul 9514   ZZcz 10885  mzPolyCldcmzpcl 30858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-mzpcl 30860
This theorem is referenced by:  elmzpcl  30863
  Copyright terms: Public domain W3C validator