Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl1 Unicode version

Theorem mzpcl1 26676
Description: Defining property 1 of a polynomially closed function set  P: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl1  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { F }
)  e.  P )

Proof of Theorem mzpcl1
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . 2  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  F  e.  ZZ )
2 simpl 444 . . . 4  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  P  e.  (mzPolyCld `  V )
)
3 elfvex 5717 . . . . . 6  |-  ( P  e.  (mzPolyCld `  V )  ->  V  e.  _V )
43adantr 452 . . . . 5  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  V  e. 
_V )
5 elmzpcl 26673 . . . . 5  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  P  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  P
)  /\  A. f  e.  P  A. g  e.  P  ( (
f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) ) )
64, 5syl 16 . . . 4  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  ( P  e.  (mzPolyCld `  V )  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V
) )  /\  (
( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  P  /\  A. f  e.  V  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) ) ) )
72, 6mpbid 202 . . 3  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  ( P 
C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
f } )  e.  P  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V
)  |->  ( g `  f ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g
)  e.  P ) ) ) )
8 simprll 739 . . 3  |-  ( ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V
) )  /\  (
( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  P  /\  A. f  e.  V  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  o F  +  g )  e.  P  /\  ( f  o F  x.  g )  e.  P ) ) )  ->  A. f  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
f } )  e.  P )
97, 8syl 16 . 2  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  P )
10 sneq 3785 . . . . 5  |-  ( f  =  F  ->  { f }  =  { F } )
1110xpeq2d 4861 . . . 4  |-  ( f  =  F  ->  (
( ZZ  ^m  V
)  X.  { f } )  =  ( ( ZZ  ^m  V
)  X.  { F } ) )
1211eleq1d 2470 . . 3  |-  ( f  =  F  ->  (
( ( ZZ  ^m  V )  X.  {
f } )  e.  P  <->  ( ( ZZ 
^m  V )  X. 
{ F } )  e.  P ) )
1312rspcva 3010 . 2  |-  ( ( F  e.  ZZ  /\  A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  P
)  ->  ( ( ZZ  ^m  V )  X. 
{ F } )  e.  P )
141, 9, 13syl2anc 643 1  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  ZZ )  ->  ( ( ZZ  ^m  V )  X.  { F }
)  e.  P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280   {csn 3774    e. cmpt 4226    X. cxp 4835   ` cfv 5413  (class class class)co 6040    o Fcof 6262    ^m cmap 6977    + caddc 8949    x. cmul 8951   ZZcz 10238  mzPolyCldcmzpcl 26668
This theorem is referenced by:  mzpincl  26681  mzpconst  26682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-mzpcl 26670
  Copyright terms: Public domain W3C validator