MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Unicode version

Theorem mvth 19171
Description: The Mean Value Theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F
) `  x is equal to the average slope over  [ A ,  B ]. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a  |-  ( ph  ->  A  e.  RR )
mvth.b  |-  ( ph  ->  B  e.  RR )
mvth.lt  |-  ( ph  ->  A  <  B )
mvth.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
mvth.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
Assertion
Ref Expression
mvth  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) ) )
Distinct variable groups:    x, A    x, B    x, F    ph, x

Proof of Theorem mvth
StepHypRef Expression
1 mvth.a . . 3  |-  ( ph  ->  A  e.  RR )
2 mvth.b . . 3  |-  ( ph  ->  B  e.  RR )
3 mvth.lt . . 3  |-  ( ph  ->  A  <  B )
4 mvth.f . . 3  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
5 mptresid 4911 . . . 4  |-  ( z  e.  ( A [,] B )  |->  z )  =  (  _I  |`  ( A [,] B ) )
6 iccssre 10609 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
71, 2, 6syl2anc 645 . . . . 5  |-  ( ph  ->  ( A [,] B
)  C_  RR )
8 ax-resscn 8674 . . . . 5  |-  RR  C_  CC
9 cncfmptid 18248 . . . . 5  |-  ( ( ( A [,] B
)  C_  RR  /\  RR  C_  CC )  ->  (
z  e.  ( A [,] B )  |->  z )  e.  ( ( A [,] B )
-cn-> RR ) )
107, 8, 9sylancl 646 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  z )  e.  ( ( A [,] B
) -cn-> RR ) )
115, 10syl5eqelr 2338 . . 3  |-  ( ph  ->  (  _I  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
12 mvth.d . . 3  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
135oveq2i 5721 . . . . . 6  |-  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  z ) )  =  ( RR  _D  (  _I  |`  ( A [,] B ) ) )
14 reex 8708 . . . . . . . . 9  |-  RR  e.  _V
1514prid1 3638 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
1615a1i 12 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
17 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  RR )
1817recnd 8741 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  z  e.  CC )
19 1re 8717 . . . . . . . 8  |-  1  e.  RR
2019a1i 12 . . . . . . 7  |-  ( (
ph  /\  z  e.  RR )  ->  1  e.  RR )
2116dvmptid 19138 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  RR  |->  z ) )  =  ( z  e.  RR  |->  1 ) )
22 eqid 2253 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2322tgioo2 18141 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
24 iccntr 18158 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
251, 2, 24syl2anc 645 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2616, 18, 20, 21, 7, 23, 22, 25dvmptres2 19143 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  z ) )  =  ( z  e.  ( A (,) B )  |->  1 ) )
2713, 26syl5eqr 2299 . . . . 5  |-  ( ph  ->  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  ( z  e.  ( A (,) B
)  |->  1 ) )
2827dmeqd 4788 . . . 4  |-  ( ph  ->  dom  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  dom  ( 
z  e.  ( A (,) B )  |->  1 ) )
29 1ex 8713 . . . . 5  |-  1  e.  _V
30 eqid 2253 . . . . 5  |-  ( z  e.  ( A (,) B )  |->  1 )  =  ( z  e.  ( A (,) B
)  |->  1 )
3129, 30dmmpti 5230 . . . 4  |-  dom  ( 
z  e.  ( A (,) B )  |->  1 )  =  ( A (,) B )
3228, 31syl6eq 2301 . . 3  |-  ( ph  ->  dom  ( RR  _D  (  _I  |`  ( A [,] B ) ) )  =  ( A (,) B ) )
331, 2, 3, 4, 11, 12, 32cmvth 19170 . 2  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) ) )
341rexrd 8761 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR* )
352rexrd 8761 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR* )
361, 2, 3ltled 8847 . . . . . . . . . . 11  |-  ( ph  ->  A  <_  B )
37 ubicc2 10631 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
3834, 35, 36, 37syl3anc 1187 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( A [,] B ) )
39 fvresi 5563 . . . . . . . . . 10  |-  ( B  e.  ( A [,] B )  ->  (
(  _I  |`  ( A [,] B ) ) `
 B )  =  B )
4038, 39syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (  _I  |`  ( A [,] B ) ) `
 B )  =  B )
41 lbicc2 10630 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
4234, 35, 36, 41syl3anc 1187 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( A [,] B ) )
43 fvresi 5563 . . . . . . . . . 10  |-  ( A  e.  ( A [,] B )  ->  (
(  _I  |`  ( A [,] B ) ) `
 A )  =  A )
4442, 43syl 17 . . . . . . . . 9  |-  ( ph  ->  ( (  _I  |`  ( A [,] B ) ) `
 A )  =  A )
4540, 44oveq12d 5728 . . . . . . . 8  |-  ( ph  ->  ( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  =  ( B  -  A
) )
4645adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
(  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  =  ( B  -  A ) )
4746oveq1d 5725 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  =  ( ( B  -  A )  x.  (
( RR  _D  F
) `  x )
) )
4827fveq1d 5379 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x )  =  ( ( z  e.  ( A (,) B )  |->  1 ) `
 x ) )
49 eqidd 2254 . . . . . . . . . 10  |-  ( z  =  x  ->  1  =  1 )
5049, 30, 29fvmpt3i 5457 . . . . . . . . 9  |-  ( x  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  1 ) `  x
)  =  1 )
5148, 50sylan9eq 2305 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x )  =  1 )
5251oveq2d 5726 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( ( F `  B
)  -  ( F `
 A ) )  x.  1 ) )
53 cncff 18229 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
544, 53syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A [,] B ) --> RR )
55 ffvelrn 5515 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> RR 
/\  B  e.  ( A [,] B ) )  ->  ( F `  B )  e.  RR )
5654, 38, 55syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  B
)  e.  RR )
57 ffvelrn 5515 . . . . . . . . . . . 12  |-  ( ( F : ( A [,] B ) --> RR 
/\  A  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
5854, 42, 57syl2anc 645 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  A
)  e.  RR )
5956, 58resubcld 9091 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  RR )
6059recnd 8741 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  CC )
6160adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
6261mulid1d 8732 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  1 )  =  ( ( F `  B )  -  ( F `  A )
) )
6352, 62eqtrd 2285 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
6447, 63eqeq12d 2267 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  <->  ( ( B  -  A )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( F `  B
)  -  ( F `
 A ) ) ) )
652, 1resubcld 9091 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
6665recnd 8741 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  CC )
6766adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( B  -  A )  e.  CC )
68 dvf 19089 . . . . . . . 8  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
6912feq2d 5237 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7068, 69mpbii 204 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
71 ffvelrn 5515 . . . . . . 7  |-  ( ( ( RR  _D  F
) : ( A (,) B ) --> CC 
/\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
7270, 71sylan 459 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
731, 2posdifd 9239 . . . . . . . . 9  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
743, 73mpbid 203 . . . . . . . 8  |-  ( ph  ->  0  <  ( B  -  A ) )
7574gt0ne0d 9217 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  =/=  0 )
7675adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( B  -  A )  =/=  0
)
7761, 67, 72, 76divmuld 9438 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) )  =  ( ( RR 
_D  F ) `  x )  <->  ( ( B  -  A )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( F `  B
)  -  ( F `
 A ) ) ) )
7864, 77bitr4d 249 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( (  _I  |`  ( A [,] B
) ) `  B
)  -  ( (  _I  |`  ( A [,] B ) ) `  A ) )  x.  ( ( RR  _D  F ) `  x
) )  =  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  <->  ( (
( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) )  =  ( ( RR  _D  F ) `  x
) ) )
79 eqcom 2255 . . . 4  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  ( (
( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  =  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) ) )
80 eqcom 2255 . . . 4  |-  ( ( ( RR  _D  F
) `  x )  =  ( ( ( F `  B )  -  ( F `  A ) )  / 
( B  -  A
) )  <->  ( (
( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) )  =  ( ( RR  _D  F ) `  x
) )
8178, 79, 803bitr4g 281 . . 3  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  (  _I  |`  ( A [,] B
) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `  B )  -  (
(  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  ( ( RR  _D  F ) `  x )  =  ( ( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) ) ) )
8281rexbidva 2524 . 2  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  (  _I  |`  ( A [,] B ) ) ) `  x ) )  =  ( ( ( (  _I  |`  ( A [,] B ) ) `
 B )  -  ( (  _I  |`  ( A [,] B ) ) `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  <->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  ( ( ( F `  B )  -  ( F `  A )
)  /  ( B  -  A ) ) ) )
8333, 82mpbid 203 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  ( ( ( F `  B
)  -  ( F `
 A ) )  /  ( B  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510    C_ wss 3078   {cpr 3545   class class class wbr 3920    e. cmpt 3974    _I cid 4197   dom cdm 4580   ran crn 4581    |` cres 4582   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    x. cmul 8622   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   (,)cioo 10534   [,]cicc 10537   TopOpenctopn 13200   topGenctg 13216  ℂfldccnfld 16209   intcnt 16586   -cn->ccncf 18212    _D cdv 19045
This theorem is referenced by:  dvlip  19172  c1liplem1  19175  dvgt0lem1  19181  dvcvx  19199
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049
  Copyright terms: Public domain W3C validator