MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf1 Structured version   Unicode version

Theorem mvrf1 18634
Description: The power series variable function is injective if the base ring is nonzero. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s  |-  S  =  ( I mPwSer  R )
mvrf.v  |-  V  =  ( I mVar  R )
mvrf.b  |-  B  =  ( Base `  S
)
mvrf.i  |-  ( ph  ->  I  e.  W )
mvrf.r  |-  ( ph  ->  R  e.  Ring )
mvrf1.z  |-  .0.  =  ( 0g `  R )
mvrf1.o  |-  .1.  =  ( 1r `  R )
mvrf1.n  |-  ( ph  ->  .1.  =/=  .0.  )
Assertion
Ref Expression
mvrf1  |-  ( ph  ->  V : I -1-1-> B
)

Proof of Theorem mvrf1
Dummy variables  h  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.s . . 3  |-  S  =  ( I mPwSer  R )
2 mvrf.v . . 3  |-  V  =  ( I mVar  R )
3 mvrf.b . . 3  |-  B  =  ( Base `  S
)
4 mvrf.i . . 3  |-  ( ph  ->  I  e.  W )
5 mvrf.r . . 3  |-  ( ph  ->  R  e.  Ring )
61, 2, 3, 4, 5mvrf 18633 . 2  |-  ( ph  ->  V : I --> B )
7 mvrf1.n . . . . . 6  |-  ( ph  ->  .1.  =/=  .0.  )
87adantr 466 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  .1.  =/=  .0.  )
9 simp2r 1032 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  ( V `  x )  =  ( V `  y ) )
109fveq1d 5879 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  x
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  ( ( V `  y
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ) )
11 eqid 2422 . . . . . . . . . 10  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
12 mvrf1.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
13 mvrf1.o . . . . . . . . . 10  |-  .1.  =  ( 1r `  R )
1443ad2ant1 1026 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  I  e.  W )
1553ad2ant1 1026 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  R  e.  Ring )
16 simp2ll 1072 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  x  e.  I )
172, 11, 12, 13, 14, 15, 16mvrid 18632 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  x
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  .1.  )
18 simp2lr 1073 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  y  e.  I )
19 1nn0 10885 . . . . . . . . . . 11  |-  1  e.  NN0
2011snifpsrbag 18575 . . . . . . . . . . 11  |-  ( ( I  e.  W  /\  1  e.  NN0 )  -> 
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
2114, 19, 20sylancl 666 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  e.  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } )
222, 11, 12, 13, 14, 15, 18, 21mvrval2 18631 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( V `  y
) `  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) )  =  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
2310, 17, 223eqtr3d 2471 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  .1.  =  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
24 simp3 1007 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  -.  x  =  y )
25 mpteqb 5976 . . . . . . . . . . . . . 14  |-  ( A. z  e.  I  if ( z  =  x ,  1 ,  0 )  e.  NN0  ->  ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  <->  A. z  e.  I  if (
z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 ) ) )
26 0nn0 10884 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
2719, 26keepel 3976 . . . . . . . . . . . . . . 15  |-  if ( z  =  x ,  1 ,  0 )  e.  NN0
2827a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  I  ->  if ( z  =  x ,  1 ,  0 )  e.  NN0 )
2925, 28mprg 2788 . . . . . . . . . . . . 13  |-  ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  <->  A. z  e.  I  if (
z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 ) )
30 iftrue 3915 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  if ( z  =  x ,  1 ,  0 )  =  1 )
31 eqeq1 2426 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  (
z  =  y  <->  x  =  y ) )
3231ifbid 3931 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  if ( z  =  y ,  1 ,  0 )  =  if ( x  =  y ,  1 ,  0 ) )
3330, 32eqeq12d 2444 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( if ( z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 )  <->  1  =  if ( x  =  y ,  1 ,  0 ) ) )
3433rspcv 3178 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  ( A. z  e.  I  if ( z  =  x ,  1 ,  0 )  =  if ( z  =  y ,  1 ,  0 )  ->  1  =  if ( x  =  y ,  1 ,  0 ) ) )
3529, 34syl5bi 220 . . . . . . . . . . . 12  |-  ( x  e.  I  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  -> 
1  =  if ( x  =  y ,  1 ,  0 ) ) )
3616, 35syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  -> 
1  =  if ( x  =  y ,  1 ,  0 ) ) )
37 ax-1ne0 9608 . . . . . . . . . . . . 13  |-  1  =/=  0
38 eqeq1 2426 . . . . . . . . . . . . . 14  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  -> 
( 1  =  0  <-> 
if ( x  =  y ,  1 ,  0 )  =  0 ) )
3938necon3abid 2670 . . . . . . . . . . . . 13  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  -> 
( 1  =/=  0  <->  -.  if ( x  =  y ,  1 ,  0 )  =  0 ) )
4037, 39mpbii 214 . . . . . . . . . . . 12  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  ->  -.  if ( x  =  y ,  1 ,  0 )  =  0 )
41 iffalse 3918 . . . . . . . . . . . 12  |-  ( -.  x  =  y  ->  if ( x  =  y ,  1 ,  0 )  =  0 )
4240, 41nsyl2 130 . . . . . . . . . . 11  |-  ( 1  =  if ( x  =  y ,  1 ,  0 )  ->  x  =  y )
4336, 42syl6 34 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  (
( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  ->  x  =  y )
)
4424, 43mtod 180 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  -.  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) )
45 iffalse 3918 . . . . . . . . 9  |-  ( -.  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) )  ->  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  .0.  )
4644, 45syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  if ( ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) )  =  ( z  e.  I  |->  if ( z  =  y ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  .0.  )
4723, 46eqtrd 2463 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) )  /\  -.  x  =  y )  ->  .1.  =  .0.  )
48473expia 1207 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  ( -.  x  =  y  ->  .1.  =  .0.  ) )
4948necon1ad 2640 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  (  .1.  =/=  .0.  ->  x  =  y ) )
508, 49mpd 15 . . . 4  |-  ( (
ph  /\  ( (
x  e.  I  /\  y  e.  I )  /\  ( V `  x
)  =  ( V `
 y ) ) )  ->  x  =  y )
5150expr 618 . . 3  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I ) )  -> 
( ( V `  x )  =  ( V `  y )  ->  x  =  y ) )
5251ralrimivva 2846 . 2  |-  ( ph  ->  A. x  e.  I  A. y  e.  I 
( ( V `  x )  =  ( V `  y )  ->  x  =  y ) )
53 dff13 6170 . 2  |-  ( V : I -1-1-> B  <->  ( V : I --> B  /\  A. x  e.  I  A. y  e.  I  (
( V `  x
)  =  ( V `
 y )  ->  x  =  y )
) )
546, 52, 53sylanbrc 668 1  |-  ( ph  ->  V : I -1-1-> B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   {crab 2779   ifcif 3909    |-> cmpt 4479   `'ccnv 4848   "cima 4852   -->wf 5593   -1-1->wf1 5594   ` cfv 5597  (class class class)co 6301    ^m cmap 7476   Fincfn 7573   0cc0 9539   1c1 9540   NNcn 10609   NN0cn0 10869   Basecbs 15106   0gc0g 15323   1rcur 17720   Ringcrg 17765   mPwSer cmps 18560   mVar cmvr 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-plusg 15188  df-mulr 15189  df-sca 15191  df-vsca 15192  df-tset 15194  df-0g 15325  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-grp 16658  df-mgp 17709  df-ur 17721  df-ring 17767  df-psr 18565  df-mvr 18566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator