MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrf Structured version   Unicode version

Theorem mvrf 18207
Description: The power series variable function is a function from the index set to elements of the power series structure representing  X
i for each  i. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
mvrf.s  |-  S  =  ( I mPwSer  R )
mvrf.v  |-  V  =  ( I mVar  R )
mvrf.b  |-  B  =  ( Base `  S
)
mvrf.i  |-  ( ph  ->  I  e.  W )
mvrf.r  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
mvrf  |-  ( ph  ->  V : I --> B )

Proof of Theorem mvrf
Dummy variables  f  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrf.r . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
2 eqid 2457 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2457 . . . . . . . . . 10  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3ringidcl 17346 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
51, 4syl 16 . . . . . . . 8  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
6 eqid 2457 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
72, 6ring0cl 17347 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  ( Base `  R
) )
81, 7syl 16 . . . . . . . 8  |-  ( ph  ->  ( 0g `  R
)  e.  ( Base `  R ) )
95, 8ifcld 3987 . . . . . . 7  |-  ( ph  ->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) )  e.  ( Base `  R
) )
109ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  I )  /\  f  e.  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )  ->  if (
f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r
`  R ) ,  ( 0g `  R
) )  e.  (
Base `  R )
)
11 eqid 2457 . . . . . 6  |-  ( f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  =  ( f  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )
1210, 11fmptd 6056 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) : { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } --> ( Base `  R ) )
13 fvex 5882 . . . . . 6  |-  ( Base `  R )  e.  _V
14 ovex 6324 . . . . . . 7  |-  ( NN0 
^m  I )  e. 
_V
1514rabex 4607 . . . . . 6  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V
1613, 15elmap 7466 . . . . 5  |-  ( ( f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( ( Base `  R )  ^m  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } )  <->  ( f  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) : { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } --> ( Base `  R ) )
1712, 16sylibr 212 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( ( Base `  R )  ^m  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } ) )
18 mvrf.s . . . . . 6  |-  S  =  ( I mPwSer  R )
19 eqid 2457 . . . . . 6  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
20 mvrf.b . . . . . 6  |-  B  =  ( Base `  S
)
21 mvrf.i . . . . . 6  |-  ( ph  ->  I  e.  W )
2218, 2, 19, 20, 21psrbas 18157 . . . . 5  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } ) )
2322adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  B  =  ( ( Base `  R )  ^m  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } ) )
2417, 23eleqtrrd 2548 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  (
f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  B )
25 eqid 2457 . . 3  |-  ( x  e.  I  |->  ( f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( x  e.  I  |->  ( f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )
2624, 25fmptd 6056 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( f  e.  {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) : I --> B )
27 mvrf.v . . . 4  |-  V  =  ( I mVar  R )
2827, 19, 6, 3, 21, 1mvrfval 18203 . . 3  |-  ( ph  ->  V  =  ( x  e.  I  |->  ( f  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
2928feq1d 5723 . 2  |-  ( ph  ->  ( V : I --> B  <->  ( x  e.  I  |->  ( f  e. 
{ h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  I  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) : I --> B ) )
3026, 29mpbird 232 1  |-  ( ph  ->  V : I --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811   ifcif 3944    |-> cmpt 4515   `'ccnv 5007   "cima 5011   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   Fincfn 7535   0cc0 9509   1c1 9510   NNcn 10556   NN0cn0 10816   Basecbs 14644   0gc0g 14857   1rcur 17280   Ringcrg 17325   mPwSer cmps 18127   mVar cmvr 18128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-tset 14731  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-mgp 17269  df-ur 17281  df-ring 17327  df-psr 18132  df-mvr 18133
This theorem is referenced by:  mvrf1  18208  mvrcl2  18209  subrgmvrf  18251  mplbas2  18261  mplbas2OLD  18262  mvrf2  18284  evlseu  18312
  Copyright terms: Public domain W3C validator