MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Unicode version

Theorem mvdco 15949
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco  |-  dom  (
( F  o.  G
)  \  _I  )  C_  ( dom  ( F 
\  _I  )  u. 
dom  ( G  \  _I  ) )

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 3755 . . . . . . . 8  |-  ( ( G  i^i  _I  )  u.  ( G  \  _I  ) )  =  G
21coeq2i 4998 . . . . . . 7  |-  ( F  o.  ( ( G  i^i  _I  )  u.  ( G  \  _I  ) ) )  =  ( F  o.  G
)
3 coundi 5337 . . . . . . 7  |-  ( F  o.  ( ( G  i^i  _I  )  u.  ( G  \  _I  ) ) )  =  ( ( F  o.  ( G  i^i  _I  )
)  u.  ( F  o.  ( G  \  _I  ) ) )
42, 3eqtr3i 2463 . . . . . 6  |-  ( F  o.  G )  =  ( ( F  o.  ( G  i^i  _I  )
)  u.  ( F  o.  ( G  \  _I  ) ) )
54difeq1i 3468 . . . . 5  |-  ( ( F  o.  G ) 
\  _I  )  =  ( ( ( F  o.  ( G  i^i  _I  ) )  u.  ( F  o.  ( G  \  _I  ) ) ) 
\  _I  )
6 difundir 3601 . . . . 5  |-  ( ( ( F  o.  ( G  i^i  _I  ) )  u.  ( F  o.  ( G  \  _I  )
) )  \  _I  )  =  ( (
( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  u.  ( ( F  o.  ( G  \  _I  )
)  \  _I  )
)
75, 6eqtri 2461 . . . 4  |-  ( ( F  o.  G ) 
\  _I  )  =  ( ( ( F  o.  ( G  i^i  _I  ) )  \  _I  )  u.  ( ( F  o.  ( G  \  _I  ) )  \  _I  ) )
87dmeqi 5039 . . 3  |-  dom  (
( F  o.  G
)  \  _I  )  =  dom  ( ( ( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  u.  ( ( F  o.  ( G  \  _I  )
)  \  _I  )
)
9 dmun 5044 . . 3  |-  dom  (
( ( F  o.  ( G  i^i  _I  )
)  \  _I  )  u.  ( ( F  o.  ( G  \  _I  )
)  \  _I  )
)  =  ( dom  ( ( F  o.  ( G  i^i  _I  )
)  \  _I  )  u.  dom  ( ( F  o.  ( G  \  _I  ) )  \  _I  ) )
108, 9eqtri 2461 . 2  |-  dom  (
( F  o.  G
)  \  _I  )  =  ( dom  (
( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  u. 
dom  ( ( F  o.  ( G  \  _I  ) )  \  _I  ) )
11 inss2 3569 . . . . . 6  |-  ( G  i^i  _I  )  C_  _I
12 coss2 4994 . . . . . 6  |-  ( ( G  i^i  _I  )  C_  _I  ->  ( F  o.  ( G  i^i  _I  ) )  C_  ( F  o.  _I  )
)
1311, 12ax-mp 5 . . . . 5  |-  ( F  o.  ( G  i^i  _I  ) )  C_  ( F  o.  _I  )
14 cocnvcnv1 5346 . . . . . . 7  |-  ( `' `' F  o.  _I  )  =  ( F  o.  _I  )
15 relcnv 5204 . . . . . . . 8  |-  Rel  `' `' F
16 coi1 5351 . . . . . . . 8  |-  ( Rel  `' `' F  ->  ( `' `' F  o.  _I  )  =  `' `' F )
1715, 16ax-mp 5 . . . . . . 7  |-  ( `' `' F  o.  _I  )  =  `' `' F
1814, 17eqtr3i 2463 . . . . . 6  |-  ( F  o.  _I  )  =  `' `' F
19 cnvcnvss 5290 . . . . . 6  |-  `' `' F  C_  F
2018, 19eqsstri 3384 . . . . 5  |-  ( F  o.  _I  )  C_  F
2113, 20sstri 3363 . . . 4  |-  ( F  o.  ( G  i^i  _I  ) )  C_  F
22 ssdif 3489 . . . 4  |-  ( ( F  o.  ( G  i^i  _I  ) ) 
C_  F  ->  (
( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  C_  ( F  \  _I  )
)
23 dmss 5037 . . . 4  |-  ( ( ( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  C_  ( F  \  _I  )  ->  dom  ( ( F  o.  ( G  i^i  _I  ) )  \  _I  )  C_  dom  ( F 
\  _I  ) )
2421, 22, 23mp2b 10 . . 3  |-  dom  (
( F  o.  ( G  i^i  _I  ) ) 
\  _I  )  C_  dom  ( F  \  _I  )
25 difss 3481 . . . . 5  |-  ( ( F  o.  ( G 
\  _I  ) ) 
\  _I  )  C_  ( F  o.  ( G  \  _I  ) )
26 dmss 5037 . . . . 5  |-  ( ( ( F  o.  ( G  \  _I  ) ) 
\  _I  )  C_  ( F  o.  ( G  \  _I  ) )  ->  dom  ( ( F  o.  ( G  \  _I  ) )  \  _I  )  C_  dom  ( F  o.  ( G  \  _I  ) ) )
2725, 26ax-mp 5 . . . 4  |-  dom  (
( F  o.  ( G  \  _I  ) ) 
\  _I  )  C_  dom  ( F  o.  ( G  \  _I  ) )
28 dmcoss 5097 . . . 4  |-  dom  ( F  o.  ( G  \  _I  ) )  C_  dom  ( G  \  _I  )
2927, 28sstri 3363 . . 3  |-  dom  (
( F  o.  ( G  \  _I  ) ) 
\  _I  )  C_  dom  ( G  \  _I  )
30 unss12 3526 . . 3  |-  ( ( dom  ( ( F  o.  ( G  i^i  _I  ) )  \  _I  )  C_  dom  ( F 
\  _I  )  /\  dom  ( ( F  o.  ( G  \  _I  )
)  \  _I  )  C_ 
dom  ( G  \  _I  ) )  ->  ( dom  ( ( F  o.  ( G  i^i  _I  )
)  \  _I  )  u.  dom  ( ( F  o.  ( G  \  _I  ) )  \  _I  ) )  C_  ( dom  ( F  \  _I  )  u.  dom  ( G 
\  _I  ) ) )
3124, 29, 30mp2an 672 . 2  |-  ( dom  ( ( F  o.  ( G  i^i  _I  )
)  \  _I  )  u.  dom  ( ( F  o.  ( G  \  _I  ) )  \  _I  ) )  C_  ( dom  ( F  \  _I  )  u.  dom  ( G 
\  _I  ) )
3210, 31eqsstri 3384 1  |-  dom  (
( F  o.  G
)  \  _I  )  C_  ( dom  ( F 
\  _I  )  u. 
dom  ( G  \  _I  ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    \ cdif 3323    u. cun 3324    i^i cin 3325    C_ wss 3326    _I cid 4629   `'ccnv 4837   dom cdm 4838    o. ccom 4842   Rel wrel 4843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-br 4291  df-opab 4349  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850
This theorem is referenced by:  f1omvdco2  15952  symgsssg  15971  symgfisg  15972  symggen  15974
  Copyright terms: Public domain W3C validator