MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Unicode version

Theorem musumsum 23847
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1  |-  ( m  =  1  ->  B  =  C )
musumsum.2  |-  ( ph  ->  A  e.  Fin )
musumsum.3  |-  ( ph  ->  A  C_  NN )
musumsum.4  |-  ( ph  ->  1  e.  A )
musumsum.5  |-  ( (
ph  /\  m  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
musumsum  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  C )
Distinct variable groups:    k, m, A    k, n, m    ph, k, m    B, k    C, m
Allowed substitution hints:    ph( n)    A( n)    B( m, n)    C( k, n)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7  |-  ( ph  ->  A  C_  NN )
21sselda 3441 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  m  e.  NN )
3 musum 23846 . . . . . 6  |-  ( m  e.  NN  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( mmu `  k
)  =  if ( m  =  1 ,  1 ,  0 ) )
42, 3syl 17 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( mmu `  k
)  =  if ( m  =  1 ,  1 ,  0 ) )
54oveq1d 6292 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( mmu `  k )  x.  B
)  =  ( if ( m  =  1 ,  1 ,  0 )  x.  B ) )
6 fzfid 12122 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  (
1 ... m )  e. 
Fin )
7 sgmss 23759 . . . . . . 7  |-  ( m  e.  NN  ->  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m ) )
82, 7syl 17 . . . . . 6  |-  ( (
ph  /\  m  e.  A )  ->  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m ) )
9 ssfi 7774 . . . . . 6  |-  ( ( ( 1 ... m
)  e.  Fin  /\  { n  e.  NN  |  n  ||  m }  C_  ( 1 ... m
) )  ->  { n  e.  NN  |  n  ||  m }  e.  Fin )
106, 8, 9syl2anc 659 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  { n  e.  NN  |  n  ||  m }  e.  Fin )
11 musumsum.5 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  B  e.  CC )
12 elrabi 3203 . . . . . . . 8  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  k  e.  NN )
13 mucl 23794 . . . . . . . 8  |-  ( k  e.  NN  ->  (
mmu `  k )  e.  ZZ )
1412, 13syl 17 . . . . . . 7  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  ( mmu `  k )  e.  ZZ )
1514zcnd 11008 . . . . . 6  |-  ( k  e.  { n  e.  NN  |  n  ||  m }  ->  ( mmu `  k )  e.  CC )
1615adantl 464 . . . . 5  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  { n  e.  NN  |  n  ||  m }
)  ->  ( mmu `  k )  e.  CC )
1710, 11, 16fsummulc1 13749 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( mmu `  k )  x.  B
)  =  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( ( mmu `  k )  x.  B
) )
18 ovif 6359 . . . . 5  |-  ( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )
19 elsn 3985 . . . . . . . . 9  |-  ( m  e.  { 1 }  <-> 
m  =  1 )
2019bicomi 202 . . . . . . . 8  |-  ( m  =  1  <->  m  e.  { 1 } )
2120a1i 11 . . . . . . 7  |-  ( B  e.  CC  ->  (
m  =  1  <->  m  e.  { 1 } ) )
22 mulid2 9623 . . . . . . 7  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
23 mul02 9791 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
2421, 22, 23ifbieq12d 3911 . . . . . 6  |-  ( B  e.  CC  ->  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )  =  if ( m  e.  { 1 } ,  B , 
0 ) )
2511, 24syl 17 . . . . 5  |-  ( (
ph  /\  m  e.  A )  ->  if ( m  =  1 ,  ( 1  x.  B ) ,  ( 0  x.  B ) )  =  if ( m  e.  { 1 } ,  B , 
0 ) )
2618, 25syl5eq 2455 . . . 4  |-  ( (
ph  /\  m  e.  A )  ->  ( if ( m  =  1 ,  1 ,  0 )  x.  B )  =  if ( m  e.  { 1 } ,  B ,  0 ) )
275, 17, 263eqtr3d 2451 . . 3  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { n  e.  NN  |  n  ||  m } 
( ( mmu `  k )  x.  B
)  =  if ( m  e.  { 1 } ,  B , 
0 ) )
2827sumeq2dv 13672 . 2  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  sum_ m  e.  A  if ( m  e.  { 1 } ,  B , 
0 ) )
29 musumsum.4 . . . 4  |-  ( ph  ->  1  e.  A )
3029snssd 4116 . . 3  |-  ( ph  ->  { 1 }  C_  A )
3130sselda 3441 . . . . 5  |-  ( (
ph  /\  m  e.  { 1 } )  ->  m  e.  A )
3231, 11syldan 468 . . . 4  |-  ( (
ph  /\  m  e.  { 1 } )  ->  B  e.  CC )
3332ralrimiva 2817 . . 3  |-  ( ph  ->  A. m  e.  {
1 } B  e.  CC )
34 musumsum.2 . . . 4  |-  ( ph  ->  A  e.  Fin )
3534olcd 391 . . 3  |-  ( ph  ->  ( A  C_  ( ZZ>=
`  1 )  \/  A  e.  Fin )
)
36 sumss2 13695 . . 3  |-  ( ( ( { 1 } 
C_  A  /\  A. m  e.  { 1 } B  e.  CC )  /\  ( A  C_  ( ZZ>= `  1 )  \/  A  e.  Fin ) )  ->  sum_ m  e.  { 1 } B  =  sum_ m  e.  A  if ( m  e.  {
1 } ,  B ,  0 ) )
3730, 33, 35, 36syl21anc 1229 . 2  |-  ( ph  -> 
sum_ m  e.  { 1 } B  =  sum_ m  e.  A  if ( m  e.  { 1 } ,  B , 
0 ) )
3811ralrimiva 2817 . . . 4  |-  ( ph  ->  A. m  e.  A  B  e.  CC )
39 musumsum.1 . . . . . 6  |-  ( m  =  1  ->  B  =  C )
4039eleq1d 2471 . . . . 5  |-  ( m  =  1  ->  ( B  e.  CC  <->  C  e.  CC ) )
4140rspcv 3155 . . . 4  |-  ( 1  e.  A  ->  ( A. m  e.  A  B  e.  CC  ->  C  e.  CC ) )
4229, 38, 41sylc 59 . . 3  |-  ( ph  ->  C  e.  CC )
4339sumsn 13710 . . 3  |-  ( ( 1  e.  A  /\  C  e.  CC )  -> 
sum_ m  e.  { 1 } B  =  C )
4429, 42, 43syl2anc 659 . 2  |-  ( ph  -> 
sum_ m  e.  { 1 } B  =  C )
4528, 37, 443eqtr2d 2449 1  |-  ( ph  -> 
sum_ m  e.  A  sum_ k  e.  { n  e.  NN  |  n  ||  m }  ( (
mmu `  k )  x.  B )  =  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   {crab 2757    C_ wss 3413   ifcif 3884   {csn 3971   class class class wbr 4394   ` cfv 5568  (class class class)co 6277   Fincfn 7553   CCcc 9519   0cc0 9521   1c1 9522    x. cmul 9526   NNcn 10575   ZZcz 10904   ZZ>=cuz 11126   ...cfz 11724   sum_csu 13655    || cdvds 14193   mmucmu 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-q 11227  df-rp 11265  df-fz 11725  df-fzo 11853  df-fl 11964  df-mod 12033  df-seq 12150  df-exp 12209  df-fac 12396  df-bc 12423  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656  df-dvds 14194  df-gcd 14352  df-prm 14425  df-pc 14568  df-mu 23753
This theorem is referenced by:  dchrmusum2  24058  dchrvmasum2lem  24060  mudivsum  24094  mulogsum  24096  mulog2sumlem2  24099
  Copyright terms: Public domain W3C validator