MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Unicode version

Theorem mumullem2 24106
Description: Lemma for mumul 24107. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
)

Proof of Theorem mumullem2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 r19.26 2952 . . . 4  |-  ( A. p  e.  Prime  ( ( p  pCnt  A )  <_  1  /\  ( p 
pCnt  B )  <_  1
)  <->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) )
2 simpr 462 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  p  e.  Prime )
3 simpl1 1008 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  NN )
42, 3pccld 14800 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
54nn0red 10934 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  RR )
6 simpl2 1009 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  NN )
72, 6pccld 14800 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  NN0 )
87nn0red 10934 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  RR )
9 1red 9666 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
1  e.  RR )
10 le2add 10104 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  e.  RR  /\  ( p  pCnt  B )  e.  RR )  /\  ( 1  e.  RR  /\  1  e.  RR ) )  ->  ( (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 ) ) )
115, 8, 9, 9, 10syl22anc 1265 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <_  ( 1  +  1 ) ) )
12 ax-1ne0 9616 . . . . . . . . . . . 12  |-  1  =/=  0
13 simpl3 1010 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( A  gcd  B
)  =  1 )
1413oveq2d 6322 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  gcd  B ) )  =  ( p  pCnt  1 ) )
153nnzd 11047 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  ZZ )
166nnzd 11047 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  ZZ )
17 pcgcd 14827 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
182, 15, 16, 17syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  gcd  B ) )  =  if ( ( p  pCnt  A )  <_  ( p  pCnt  B
) ,  ( p 
pCnt  A ) ,  ( p  pCnt  B )
) )
19 pc1 14805 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p 
pCnt  1 )  =  0 )
2019adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  1
)  =  0 )
2114, 18, 203eqtr3d 2471 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  =  0 )
22 ifid 3948 . . . . . . . . . . . . . . . 16  |-  if ( ( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  1 ,  1 )  =  1
23 ifeq12 3928 . . . . . . . . . . . . . . . 16  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  1 ,  1 )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
2422, 23syl5eqr 2477 . . . . . . . . . . . . . . 15  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  1  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
2524eqeq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  (
1  =  0  <->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  =  0 ) )
2621, 25syl5ibrcom 225 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) )  ->  1  = 
0 ) )
2726necon3ad 2630 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  =/=  0  ->  -.  ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) ) ) )
2812, 27mpi 20 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  -.  ( 1  =  ( p  pCnt  A )  /\  1  =  (
p  pCnt  B )
) )
29 ax-1cn 9605 . . . . . . . . . . . . 13  |-  1  e.  CC
305recnd 9677 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  CC )
31 subeq0 9908 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( p  pCnt  A )  e.  CC )  -> 
( ( 1  -  ( p  pCnt  A
) )  =  0  <->  1  =  ( p 
pCnt  A ) ) )
3229, 30, 31sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  -  ( p  pCnt  A
) )  =  0  <->  1  =  ( p 
pCnt  A ) ) )
338recnd 9677 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  CC )
34 subeq0 9908 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( p  pCnt  B )  e.  CC )  -> 
( ( 1  -  ( p  pCnt  B
) )  =  0  <->  1  =  ( p 
pCnt  B ) ) )
3529, 33, 34sylancr 667 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  -  ( p  pCnt  B
) )  =  0  <->  1  =  ( p 
pCnt  B ) ) )
3632, 35anbi12d 715 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  -  ( p  pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 )  <->  ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) ) ) )
3728, 36mtbird 302 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  -.  ( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) )
3837adantr 466 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  -.  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) )
39 eqcom 2431 . . . . . . . . . . 11  |-  ( ( 1  +  1 )  =  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  =  ( 1  +  1 ) )
40 1re 9650 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
4140, 40readdcli 9664 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  e.  RR
4241recni 9663 . . . . . . . . . . . . . . . 16  |-  ( 1  +  1 )  e.  CC
434, 7nn0addcld 10937 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e. 
NN0 )
4443nn0red 10934 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  RR )
4544recnd 9677 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  CC )
46 subeq0 9908 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  +  1 )  e.  CC  /\  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  CC )  ->  (
( ( 1  +  1 )  -  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )  =  0  <->  ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) )
4742, 45, 46sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) )
4847, 39syl6bb 264 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 ) ) )
499recnd 9677 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
1  e.  CC )
5049, 49, 30, 33addsub4d 10041 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  +  1 )  -  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )  =  ( ( 1  -  ( p  pCnt  A ) )  +  ( 1  -  ( p 
pCnt  B ) ) ) )
5150eqeq1d 2424 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( (
1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0 ) )
5248, 51bitr3d 258 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  =  ( 1  +  1 )  <->  ( (
1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0 ) )
5352adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 )  <-> 
( ( 1  -  ( p  pCnt  A
) )  +  ( 1  -  ( p 
pCnt  B ) ) )  =  0 ) )
54 subge0 10135 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  A )  e.  RR )  -> 
( 0  <_  (
1  -  ( p 
pCnt  A ) )  <->  ( p  pCnt  A )  <_  1
) )
5540, 5, 54sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 0  <_  (
1  -  ( p 
pCnt  A ) )  <->  ( p  pCnt  A )  <_  1
) )
56 subge0 10135 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  B )  e.  RR )  -> 
( 0  <_  (
1  -  ( p 
pCnt  B ) )  <->  ( p  pCnt  B )  <_  1
) )
5740, 8, 56sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 0  <_  (
1  -  ( p 
pCnt  B ) )  <->  ( p  pCnt  B )  <_  1
) )
5855, 57anbi12d 715 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) )  <-> 
( ( p  pCnt  A )  <_  1  /\  ( p  pCnt  B )  <_  1 ) ) )
59 resubcl 9946 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  A )  e.  RR )  -> 
( 1  -  (
p  pCnt  A )
)  e.  RR )
6040, 5, 59sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  -  (
p  pCnt  A )
)  e.  RR )
61 resubcl 9946 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  B )  e.  RR )  -> 
( 1  -  (
p  pCnt  B )
)  e.  RR )
6240, 8, 61sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  -  (
p  pCnt  B )
)  e.  RR )
63 add20 10134 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1  -  ( p  pCnt  A
) )  e.  RR  /\  0  <_  ( 1  -  ( p  pCnt  A ) ) )  /\  ( ( 1  -  ( p  pCnt  B
) )  e.  RR  /\  0  <_  ( 1  -  ( p  pCnt  B ) ) ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6463an4s 833 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 1  -  ( p  pCnt  A
) )  e.  RR  /\  ( 1  -  (
p  pCnt  B )
)  e.  RR )  /\  ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) ) )  ->  ( (
( 1  -  (
p  pCnt  A )
)  +  ( 1  -  ( p  pCnt  B ) ) )  =  0  <->  ( ( 1  -  ( p  pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6564ex 435 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  (
p  pCnt  A )
)  e.  RR  /\  ( 1  -  (
p  pCnt  B )
)  e.  RR )  ->  ( ( 0  <_  ( 1  -  ( p  pCnt  A
) )  /\  0  <_  ( 1  -  (
p  pCnt  B )
) )  ->  (
( ( 1  -  ( p  pCnt  A
) )  +  ( 1  -  ( p 
pCnt  B ) ) )  =  0  <->  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) ) ) )
6660, 62, 65syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) ) )
6758, 66sylbird 238 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) ) )
6867imp 430 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6953, 68bitrd 256 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 )  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
7039, 69syl5bb 260 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <->  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) ) )
7170necon3abid 2666 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <->  -.  (
( 1  -  (
p  pCnt  A )
)  =  0  /\  ( 1  -  (
p  pCnt  B )
)  =  0 ) ) )
7238, 71mpbird 235 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )
7372ex 435 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) )
7411, 73jcad 535 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  <_  (
1  +  1 )  /\  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) ) )
75 nnz 10967 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  ZZ )
76 nnne0 10650 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =/=  0 )
7775, 76jca 534 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( A  e.  ZZ  /\  A  =/=  0 ) )
783, 77syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( A  e.  ZZ  /\  A  =/=  0 ) )
79 nnz 10967 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  ZZ )
80 nnne0 10650 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  =/=  0 )
8179, 80jca 534 . . . . . . . . . 10  |-  ( B  e.  NN  ->  ( B  e.  ZZ  /\  B  =/=  0 ) )
826, 81syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( B  e.  ZZ  /\  B  =/=  0 ) )
83 pcmul 14801 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  ( A  x.  B )
)  =  ( ( p  pCnt  A )  +  ( p  pCnt  B ) ) )
842, 78, 82, 83syl3anc 1264 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  x.  B )
)  =  ( ( p  pCnt  A )  +  ( p  pCnt  B ) ) )
8584breq1d 4433 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( A  x.  B ) )  <_  1  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  <_  1
) )
86 1nn0 10893 . . . . . . . 8  |-  1  e.  NN0
87 nn0leltp1 11003 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e. 
NN0  /\  1  e.  NN0 )  ->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
1  <->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <  ( 1  +  1 ) ) )
8843, 86, 87sylancl 666 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <_  1  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  <  (
1  +  1 ) ) )
89 ltlen 9743 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  RR  /\  ( 1  +  1 )  e.  RR )  ->  (
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  < 
( 1  +  1 )  <->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  <_  (
1  +  1 )  /\  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) ) )
9044, 41, 89sylancl 666 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <  ( 1  +  1 )  <->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 )  /\  ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) ) )
9185, 88, 903bitrd 282 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( A  x.  B ) )  <_  1  <->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 )  /\  ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) ) )
9274, 91sylibrd 237 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( p  pCnt  ( A  x.  B ) )  <_  1 ) )
9392ralimdva 2830 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  ( A. p  e.  Prime  ( ( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 )  ->  A. p  e.  Prime  ( p  pCnt  ( A  x.  B ) )  <_ 
1 ) )
941, 93syl5bir 221 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 )  ->  A. p  e.  Prime  ( p  pCnt  ( A  x.  B ) )  <_  1 ) )
95 issqf 24062 . . . . 5  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  A )  <_  1
) )
96 issqf 24062 . . . . 5  |-  ( B  e.  NN  ->  (
( mmu `  B
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  B )  <_  1
) )
9795, 96bi2anan9 881 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  <-> 
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) ) )
98973adant3 1025 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  <-> 
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) ) )
99 nnmulcl 10640 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
100993adant3 1025 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  ( A  x.  B )  e.  NN )
101 issqf 24062 . . . 4  |-  ( ( A  x.  B )  e.  NN  ->  (
( mmu `  ( A  x.  B )
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  ( A  x.  B ) )  <_ 
1 ) )
102100, 101syl 17 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( mmu `  ( A  x.  B )
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  ( A  x.  B ) )  <_ 
1 ) )
10394, 98, 1023imtr4d 271 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
) )
104103imp 430 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   ifcif 3911   class class class wbr 4423   ` cfv 5601  (class class class)co 6306   CCcc 9545   RRcr 9546   0cc0 9547   1c1 9548    + caddc 9550    x. cmul 9552    < clt 9683    <_ cle 9684    - cmin 9868   NNcn 10617   NN0cn0 10877   ZZcz 10945    gcd cgcd 14468   Primecprime 14622    pCnt cpc 14786   mmucmu 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-cnex 9603  ax-resscn 9604  ax-1cn 9605  ax-icn 9606  ax-addcl 9607  ax-addrcl 9608  ax-mulcl 9609  ax-mulrcl 9610  ax-mulcom 9611  ax-addass 9612  ax-mulass 9613  ax-distr 9614  ax-i2m1 9615  ax-1ne0 9616  ax-1rid 9617  ax-rnegex 9618  ax-rrecex 9619  ax-cnre 9620  ax-pre-lttri 9621  ax-pre-lttrn 9622  ax-pre-ltadd 9623  ax-pre-mulgt0 9624  ax-pre-sup 9625
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-om 6708  df-1st 6808  df-2nd 6809  df-wrecs 7040  df-recs 7102  df-rdg 7140  df-1o 7194  df-2o 7195  df-oadd 7198  df-er 7375  df-en 7582  df-dom 7583  df-sdom 7584  df-fin 7585  df-sup 7966  df-inf 7967  df-card 8382  df-pnf 9685  df-mnf 9686  df-xr 9687  df-ltxr 9688  df-le 9689  df-sub 9870  df-neg 9871  df-div 10278  df-nn 10618  df-2 10676  df-3 10677  df-n0 10878  df-z 10946  df-uz 11168  df-q 11273  df-rp 11311  df-fz 11793  df-fl 12035  df-mod 12104  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13163  df-re 13164  df-im 13165  df-sqrt 13299  df-abs 13300  df-dvds 14306  df-gcd 14469  df-prm 14623  df-pc 14787  df-mu 24026
This theorem is referenced by:  mumul  24107
  Copyright terms: Public domain W3C validator