MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Unicode version

Theorem mumullem2 22518
Description: Lemma for mumul 22519. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
)

Proof of Theorem mumullem2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 r19.26 2849 . . . 4  |-  ( A. p  e.  Prime  ( ( p  pCnt  A )  <_  1  /\  ( p 
pCnt  B )  <_  1
)  <->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) )
2 simpr 461 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  p  e.  Prime )
3 simpl1 991 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  NN )
42, 3pccld 13917 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
54nn0red 10637 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  RR )
6 simpl2 992 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  NN )
72, 6pccld 13917 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  NN0 )
87nn0red 10637 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  RR )
9 1red 9401 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
1  e.  RR )
10 le2add 9821 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  e.  RR  /\  ( p  pCnt  B )  e.  RR )  /\  ( 1  e.  RR  /\  1  e.  RR ) )  ->  ( (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 ) ) )
115, 8, 9, 9, 10syl22anc 1219 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <_  ( 1  +  1 ) ) )
12 ax-1ne0 9351 . . . . . . . . . . . 12  |-  1  =/=  0
13 simpl3 993 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( A  gcd  B
)  =  1 )
1413oveq2d 6107 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  gcd  B ) )  =  ( p  pCnt  1 ) )
153nnzd 10746 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  ZZ )
166nnzd 10746 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  ZZ )
17 pcgcd 13944 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
182, 15, 16, 17syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  gcd  B ) )  =  if ( ( p  pCnt  A )  <_  ( p  pCnt  B
) ,  ( p 
pCnt  A ) ,  ( p  pCnt  B )
) )
19 pc1 13922 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  ( p 
pCnt  1 )  =  0 )
2019adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  1
)  =  0 )
2114, 18, 203eqtr3d 2483 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  =  0 )
22 ifid 3826 . . . . . . . . . . . . . . . 16  |-  if ( ( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  1 ,  1 )  =  1
23 ifeq12 3806 . . . . . . . . . . . . . . . 16  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  1 ,  1 )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
2422, 23syl5eqr 2489 . . . . . . . . . . . . . . 15  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  1  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
2524eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( ( 1  =  ( p 
pCnt  A )  /\  1  =  ( p  pCnt  B ) )  ->  (
1  =  0  <->  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  =  0 ) )
2621, 25syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) )  ->  1  = 
0 ) )
2726necon3ad 2644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  =/=  0  ->  -.  ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) ) ) )
2812, 27mpi 17 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  -.  ( 1  =  ( p  pCnt  A )  /\  1  =  (
p  pCnt  B )
) )
29 ax-1cn 9340 . . . . . . . . . . . . 13  |-  1  e.  CC
305recnd 9412 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  CC )
31 subeq0 9635 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( p  pCnt  A )  e.  CC )  -> 
( ( 1  -  ( p  pCnt  A
) )  =  0  <->  1  =  ( p 
pCnt  A ) ) )
3229, 30, 31sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  -  ( p  pCnt  A
) )  =  0  <->  1  =  ( p 
pCnt  A ) ) )
338recnd 9412 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  B
)  e.  CC )
34 subeq0 9635 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( p  pCnt  B )  e.  CC )  -> 
( ( 1  -  ( p  pCnt  B
) )  =  0  <->  1  =  ( p 
pCnt  B ) ) )
3529, 33, 34sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  -  ( p  pCnt  B
) )  =  0  <->  1  =  ( p 
pCnt  B ) ) )
3632, 35anbi12d 710 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  -  ( p  pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 )  <->  ( 1  =  ( p  pCnt  A
)  /\  1  =  ( p  pCnt  B ) ) ) )
3728, 36mtbird 301 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  -.  ( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) )
3837adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  -.  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) )
39 eqcom 2445 . . . . . . . . . . 11  |-  ( ( 1  +  1 )  =  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  =  ( 1  +  1 ) )
40 1re 9385 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
4140, 40readdcli 9399 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  e.  RR
4241recni 9398 . . . . . . . . . . . . . . . 16  |-  ( 1  +  1 )  e.  CC
434, 7nn0addcld 10640 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e. 
NN0 )
4443nn0red 10637 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  RR )
4544recnd 9412 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  CC )
46 subeq0 9635 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  +  1 )  e.  CC  /\  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  CC )  ->  (
( ( 1  +  1 )  -  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )  =  0  <->  ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) )
4742, 45, 46sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) )
4847, 39syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 ) ) )
499recnd 9412 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
1  e.  CC )
5049, 49, 30, 33addsub4d 9766 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 1  +  1 )  -  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )  =  ( ( 1  -  ( p  pCnt  A ) )  +  ( 1  -  ( p 
pCnt  B ) ) ) )
5150eqeq1d 2451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( 1  +  1 )  -  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) )  =  0  <->  ( (
1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0 ) )
5248, 51bitr3d 255 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  =  ( 1  +  1 )  <->  ( (
1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0 ) )
5352adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 )  <-> 
( ( 1  -  ( p  pCnt  A
) )  +  ( 1  -  ( p 
pCnt  B ) ) )  =  0 ) )
54 subge0 9852 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  A )  e.  RR )  -> 
( 0  <_  (
1  -  ( p 
pCnt  A ) )  <->  ( p  pCnt  A )  <_  1
) )
5540, 5, 54sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 0  <_  (
1  -  ( p 
pCnt  A ) )  <->  ( p  pCnt  A )  <_  1
) )
56 subge0 9852 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  B )  e.  RR )  -> 
( 0  <_  (
1  -  ( p 
pCnt  B ) )  <->  ( p  pCnt  B )  <_  1
) )
5740, 8, 56sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 0  <_  (
1  -  ( p 
pCnt  B ) )  <->  ( p  pCnt  B )  <_  1
) )
5855, 57anbi12d 710 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) )  <-> 
( ( p  pCnt  A )  <_  1  /\  ( p  pCnt  B )  <_  1 ) ) )
59 resubcl 9673 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  A )  e.  RR )  -> 
( 1  -  (
p  pCnt  A )
)  e.  RR )
6040, 5, 59sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  -  (
p  pCnt  A )
)  e.  RR )
61 resubcl 9673 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( p  pCnt  B )  e.  RR )  -> 
( 1  -  (
p  pCnt  B )
)  e.  RR )
6240, 8, 61sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( 1  -  (
p  pCnt  B )
)  e.  RR )
63 add20 9851 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1  -  ( p  pCnt  A
) )  e.  RR  /\  0  <_  ( 1  -  ( p  pCnt  A ) ) )  /\  ( ( 1  -  ( p  pCnt  B
) )  e.  RR  /\  0  <_  ( 1  -  ( p  pCnt  B ) ) ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6463an4s 822 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 1  -  ( p  pCnt  A
) )  e.  RR  /\  ( 1  -  (
p  pCnt  B )
)  e.  RR )  /\  ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) ) )  ->  ( (
( 1  -  (
p  pCnt  A )
)  +  ( 1  -  ( p  pCnt  B ) ) )  =  0  <->  ( ( 1  -  ( p  pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6564ex 434 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  -  (
p  pCnt  A )
)  e.  RR  /\  ( 1  -  (
p  pCnt  B )
)  e.  RR )  ->  ( ( 0  <_  ( 1  -  ( p  pCnt  A
) )  /\  0  <_  ( 1  -  (
p  pCnt  B )
) )  ->  (
( ( 1  -  ( p  pCnt  A
) )  +  ( 1  -  ( p 
pCnt  B ) ) )  =  0  <->  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) ) ) )
6660, 62, 65syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( 0  <_ 
( 1  -  (
p  pCnt  A )
)  /\  0  <_  ( 1  -  ( p 
pCnt  B ) ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) ) )
6758, 66sylbird 235 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) ) )
6867imp 429 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( 1  -  ( p 
pCnt  A ) )  +  ( 1  -  (
p  pCnt  B )
) )  =  0  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
6953, 68bitrd 253 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  =  ( 1  +  1 )  <-> 
( ( 1  -  ( p  pCnt  A
) )  =  0  /\  ( 1  -  ( p  pCnt  B
) )  =  0 ) ) )
7039, 69syl5bb 257 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( 1  +  1 )  =  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <->  ( (
1  -  ( p 
pCnt  A ) )  =  0  /\  ( 1  -  ( p  pCnt  B ) )  =  0 ) ) )
7170necon3abid 2641 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  <->  -.  (
( 1  -  (
p  pCnt  A )
)  =  0  /\  ( 1  -  (
p  pCnt  B )
)  =  0 ) ) )
7238, 71mpbird 232 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  /\  (
( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 ) )  ->  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) )
7372ex 434 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) )
7411, 73jcad 533 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  <_  (
1  +  1 )  /\  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) ) )
75 nnz 10668 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  ZZ )
76 nnne0 10354 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =/=  0 )
7775, 76jca 532 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( A  e.  ZZ  /\  A  =/=  0 ) )
783, 77syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( A  e.  ZZ  /\  A  =/=  0 ) )
79 nnz 10668 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  ZZ )
80 nnne0 10354 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  =/=  0 )
8179, 80jca 532 . . . . . . . . . 10  |-  ( B  e.  NN  ->  ( B  e.  ZZ  /\  B  =/=  0 ) )
826, 81syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( B  e.  ZZ  /\  B  =/=  0 ) )
83 pcmul 13918 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  ( A  x.  B )
)  =  ( ( p  pCnt  A )  +  ( p  pCnt  B ) ) )
842, 78, 82, 83syl3anc 1218 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( p  pCnt  ( A  x.  B )
)  =  ( ( p  pCnt  A )  +  ( p  pCnt  B ) ) )
8584breq1d 4302 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( A  x.  B ) )  <_  1  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  <_  1
) )
86 1nn0 10595 . . . . . . . 8  |-  1  e.  NN0
87 nn0leltp1 10703 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e. 
NN0  /\  1  e.  NN0 )  ->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
1  <->  ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <  ( 1  +  1 ) ) )
8843, 86, 87sylancl 662 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <_  1  <->  ( (
p  pCnt  A )  +  ( p  pCnt  B ) )  <  (
1  +  1 ) ) )
89 ltlen 9476 . . . . . . . 8  |-  ( ( ( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  e.  RR  /\  ( 1  +  1 )  e.  RR )  ->  (
( ( p  pCnt  A )  +  ( p 
pCnt  B ) )  < 
( 1  +  1 )  <->  ( ( ( p  pCnt  A )  +  ( p  pCnt  B ) )  <_  (
1  +  1 )  /\  ( 1  +  1 )  =/=  (
( p  pCnt  A
)  +  ( p 
pCnt  B ) ) ) ) )
9044, 41, 89sylancl 662 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  +  ( p  pCnt  B )
)  <  ( 1  +  1 )  <->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 )  /\  ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) ) )
9185, 88, 903bitrd 279 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( p  pCnt  ( A  x.  B ) )  <_  1  <->  ( (
( p  pCnt  A
)  +  ( p 
pCnt  B ) )  <_ 
( 1  +  1 )  /\  ( 1  +  1 )  =/=  ( ( p  pCnt  A )  +  ( p 
pCnt  B ) ) ) ) )
9274, 91sylibrd 234 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  -> 
( ( ( p 
pCnt  A )  <_  1  /\  ( p  pCnt  B
)  <_  1 )  ->  ( p  pCnt  ( A  x.  B ) )  <_  1 ) )
9392ralimdva 2794 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  ( A. p  e.  Prime  ( ( p  pCnt  A
)  <_  1  /\  ( p  pCnt  B )  <_  1 )  ->  A. p  e.  Prime  ( p  pCnt  ( A  x.  B ) )  <_ 
1 ) )
941, 93syl5bir 218 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 )  ->  A. p  e.  Prime  ( p  pCnt  ( A  x.  B ) )  <_  1 ) )
95 issqf 22474 . . . . 5  |-  ( A  e.  NN  ->  (
( mmu `  A
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  A )  <_  1
) )
96 issqf 22474 . . . . 5  |-  ( B  e.  NN  ->  (
( mmu `  B
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  B )  <_  1
) )
9795, 96bi2anan9 868 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  <-> 
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) ) )
98973adant3 1008 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  <-> 
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  1  /\  A. p  e.  Prime  (
p  pCnt  B )  <_  1 ) ) )
99 nnmulcl 10345 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
100993adant3 1008 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  ( A  x.  B )  e.  NN )
101 issqf 22474 . . . 4  |-  ( ( A  x.  B )  e.  NN  ->  (
( mmu `  ( A  x.  B )
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  ( A  x.  B ) )  <_ 
1 ) )
102100, 101syl 16 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( mmu `  ( A  x.  B )
)  =/=  0  <->  A. p  e.  Prime  ( p 
pCnt  ( A  x.  B ) )  <_ 
1 ) )
10394, 98, 1023imtr4d 268 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
) )
104103imp 429 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   ifcif 3791   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    <_ cle 9419    - cmin 9595   NNcn 10322   NN0cn0 10579   ZZcz 10646    gcd cgcd 13690   Primecprime 13763    pCnt cpc 13903   mmucmu 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-fz 11438  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-gcd 13691  df-prm 13764  df-pc 13904  df-mu 22438
This theorem is referenced by:  mumul  22519
  Copyright terms: Public domain W3C validator