MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulresr Structured version   Unicode version

Theorem mulresr 9302
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulresr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )

Proof of Theorem mulresr
StepHypRef Expression
1 0r 9243 . . 3  |-  0R  e.  R.
2 mulcnsr 9299 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  e.  R. )  /\  ( B  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
32an4s 817 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( 0R  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) ) >. )
41, 1, 3mpanr12 680 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. (
( A  .R  B
)  +R  ( -1R 
.R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>. )
5 00sr 9262 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . 7  |-  ( 0R 
.R  0R )  =  0R
76oveq2i 6101 . . . . . 6  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  ( -1R  .R  0R )
8 m1r 9245 . . . . . . 7  |-  -1R  e.  R.
9 00sr 9262 . . . . . . 7  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
108, 9ax-mp 5 . . . . . 6  |-  ( -1R 
.R  0R )  =  0R
117, 10eqtri 2461 . . . . 5  |-  ( -1R 
.R  ( 0R  .R  0R ) )  =  0R
1211oveq2i 6101 . . . 4  |-  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( ( A  .R  B
)  +R  0R )
13 mulclsr 9247 . . . . 5  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )
14 0idsr 9260 . . . . 5  |-  ( ( A  .R  B )  e.  R.  ->  (
( A  .R  B
)  +R  0R )  =  ( A  .R  B ) )
1513, 14syl 16 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  0R )  =  ( A  .R  B ) )
1612, 15syl5eq 2485 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) )  =  ( A  .R  B
) )
17 mulcomsr 9252 . . . . . 6  |-  ( 0R 
.R  B )  =  ( B  .R  0R )
18 00sr 9262 . . . . . 6  |-  ( B  e.  R.  ->  ( B  .R  0R )  =  0R )
1917, 18syl5eq 2485 . . . . 5  |-  ( B  e.  R.  ->  ( 0R  .R  B )  =  0R )
20 00sr 9262 . . . . 5  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
2119, 20oveqan12rd 6110 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  ( 0R  +R  0R ) )
22 0idsr 9260 . . . . 5  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
231, 22ax-mp 5 . . . 4  |-  ( 0R 
+R  0R )  =  0R
2421, 23syl6eq 2489 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )  =  0R )
2516, 24opeq12d 4064 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. ( ( A  .R  B )  +R  ( -1R  .R  ( 0R  .R  0R ) ) ) ,  ( ( 0R  .R  B )  +R  ( A  .R  0R ) )
>.  =  <. ( A  .R  B ) ,  0R >. )
264, 25eqtrd 2473 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   <.cop 3880  (class class class)co 6090   R.cnr 9030   0Rc0r 9031   -1Rcm1r 9033    +R cplr 9034    .R cmr 9035    x. cmul 9283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-ni 9037  df-pli 9038  df-mi 9039  df-lti 9040  df-plpq 9073  df-mpq 9074  df-ltpq 9075  df-enq 9076  df-nq 9077  df-erq 9078  df-plq 9079  df-mq 9080  df-1nq 9081  df-rq 9082  df-ltnq 9083  df-np 9146  df-1p 9147  df-plp 9148  df-mp 9149  df-ltp 9150  df-plpr 9220  df-mpr 9221  df-enr 9222  df-nr 9223  df-plr 9224  df-mr 9225  df-0r 9227  df-m1r 9229  df-c 9284  df-mul 9290
This theorem is referenced by:  axmulrcl  9317  ax1rid  9324  axrrecex  9326  axpre-mulgt0  9331
  Copyright terms: Public domain W3C validator