MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpqnq Structured version   Unicode version

Theorem mulpqnq 9336
Description: Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulpqnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )

Proof of Theorem mulpqnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mq 9310 . . . . 5  |-  .Q  =  ( ( /Q  o.  .pQ  )  |`  ( Q. 
X.  Q. ) )
21fveq1i 5873 . . . 4  |-  (  .Q 
`  <. A ,  B >. )  =  ( ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
32a1i 11 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  .Q  `  <. A ,  B >. )  =  ( ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
)
4 opelxpi 5040 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( Q.  X.  Q. ) )
5 fvres 5886 . . . 4  |-  ( <. A ,  B >.  e.  ( Q.  X.  Q. )  ->  ( ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )  =  ( ( /Q  o.  .pQ  ) `  <. A ,  B >. ) )
64, 5syl 16 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) `
 <. A ,  B >. )  =  ( ( /Q  o.  .pQ  ) `  <. A ,  B >. ) )
7 df-mpq 9304 . . . . 5  |-  .pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.
)
8 opex 4720 . . . . 5  |-  <. (
( 1st `  x
)  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x
)  .N  ( 2nd `  y ) ) >.  e.  _V
97, 8fnmpt2i 6868 . . . 4  |-  .pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )
10 elpqn 9320 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
11 elpqn 9320 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
12 opelxpi 5040 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
1310, 11, 12syl2an 477 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
14 fvco2 5948 . . . 4  |-  ( ( 
.pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  /\  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  .pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  .pQ  ` 
<. A ,  B >. ) ) )
159, 13, 14sylancr 663 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( /Q  o.  .pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  .pQ  ` 
<. A ,  B >. ) ) )
163, 6, 153eqtrd 2502 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  .Q  `  <. A ,  B >. )  =  ( /Q `  (  .pQ  `  <. A ,  B >. ) ) )
17 df-ov 6299 . 2  |-  ( A  .Q  B )  =  (  .Q  `  <. A ,  B >. )
18 df-ov 6299 . . 3  |-  ( A 
.pQ  B )  =  (  .pQ  `  <. A ,  B >. )
1918fveq2i 5875 . 2  |-  ( /Q
`  ( A  .pQ  B ) )  =  ( /Q `  (  .pQ  ` 
<. A ,  B >. ) )
2016, 17, 193eqtr4g 2523 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   <.cop 4038    X. cxp 5006    |` cres 5010    o. ccom 5012    Fn wfn 5589   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   N.cnpi 9239    .N cmi 9241    .pQ cmpq 9244   Q.cnq 9247   /Qcerq 9249    .Q cmq 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-mpq 9304  df-nq 9307  df-mq 9310
This theorem is referenced by:  mulclnq  9342  mulcomnq  9348  mulerpq  9352  mulassnq  9354  distrnq  9356  mulidnq  9358  ltmnq  9367
  Copyright terms: Public domain W3C validator