MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulpiord Structured version   Unicode version

Theorem mulpiord 9155
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulpiord  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )

Proof of Theorem mulpiord
StepHypRef Expression
1 opelxpi 4969 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 fvres 5803 . . 3  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )  =  (  .o  `  <. A ,  B >. )
)
3 df-ov 6193 . . . 4  |-  ( A  .N  B )  =  (  .N  `  <. A ,  B >. )
4 df-mi 9144 . . . . 5  |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
54fveq1i 5790 . . . 4  |-  (  .N 
`  <. A ,  B >. )  =  ( (  .o  |`  ( N.  X.  N. ) ) `  <. A ,  B >. )
63, 5eqtri 2480 . . 3  |-  ( A  .N  B )  =  ( (  .o  |`  ( N.  X.  N. ) ) `
 <. A ,  B >. )
7 df-ov 6193 . . 3  |-  ( A  .o  B )  =  (  .o  `  <. A ,  B >. )
82, 6, 73eqtr4g 2517 . 2  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
91, 8syl 16 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3981    X. cxp 4936    |` cres 4940   ` cfv 5516  (class class class)co 6190    .o comu 7018   N.cnpi 9112    .N cmi 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-xp 4944  df-res 4950  df-iota 5479  df-fv 5524  df-ov 6193  df-mi 9144
This theorem is referenced by:  mulidpi  9156  mulclpi  9163  mulcompi  9166  mulasspi  9167  distrpi  9168  mulcanpi  9170  ltmpi  9174
  Copyright terms: Public domain W3C validator