MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsum Structured version   Unicode version

Theorem mulogsum 23438
Description: Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log (
x  /  n )  =  O(1). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem mulogsum
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11219 . . . 4  |-  RR+  C_  RR
2 ax-1cn 9539 . . . 4  |-  1  e.  CC
3 o1const 13391 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O(1) )
41, 2, 3mp2an 672 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O(1)
5 1cnd 9601 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  1  e.  CC )
6 fzfid 12039 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 11703 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 466 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
9 mucl 23136 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
108, 9syl 16 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1110zred 10955 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1211, 8nndivred 10573 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
137nnrpd 11244 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
14 rpdivcl 11231 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
1513, 14sylan2 474 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
1615relogcld 22729 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1712, 16remulcld 9613 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
1817recnd 9611 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
196, 18fsumcl 13504 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
2019adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
21 mulogsumlem 23437 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)
22 sumex 13459 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V
2322a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V )
2421a1i 11 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1) )
2523, 24o1mptrcl 13394 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
265, 20subcld 9919 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  CC )
27 1red 9600 . . . . . 6  |-  ( T. 
->  1  e.  RR )
28 elfznn 11703 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
2928ssriv 3501 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  x ) )  C_  NN
3029a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
3130sselda 3497 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3231, 9syl 16 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
3332zred 10955 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
3433, 31nndivred 10573 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  RR )
3534recnd 9611 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
36 fzfid 12039 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
37 elfznn 11703 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3837adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
3938nnrpd 11244 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
4039rpcnne0d 11254 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
41 reccl 10203 . . . . . . . . . . . 12  |-  ( ( m  e.  CC  /\  m  =/=  0 )  -> 
( 1  /  m
)  e.  CC )
4240, 41syl 16 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4336, 42fsumcl 13504 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
44 simpl 457 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
4544, 13, 14syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
4645relogcld 22729 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  RR )
4746recnd 9611 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  CC )
4835, 43, 47subdid 10001 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
4948sumeq2dv 13474 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
50 fzfid 12039 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
5135, 43mulcld 9605 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  e.  CC )
5218adantlr 714 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
5350, 51, 52fsumsub 13552 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
54 oveq2 6283 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
1  /  k )  =  ( 1  / 
( n  x.  m
) ) )
5554oveq2d 6291 . . . . . . . . . . 11  |-  ( k  =  ( n  x.  m )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
56 rpre 11215 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
5756adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
58 ssrab2 3578 . . . . . . . . . . . . . . 15  |-  { y  e.  NN  |  y 
||  k }  C_  NN
59 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
6058, 59sseldi 3495 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
6160, 9syl 16 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
6261zcnd 10956 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
6328adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
6463nnrecred 10570 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  RR )
6564recnd 9611 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  CC )
6665adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
1  /  k )  e.  CC )
6762, 66mulcld 9605 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  e.  CC )
6855, 57, 67dvdsflsumcom 23185 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) ) )
69 oveq2 6283 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
1  /  k )  =  ( 1  / 
1 ) )
70 1div1e1 10226 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
7169, 70syl6eq 2517 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
1  /  k )  =  1 )
72 flge1nn 11911 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7356, 72sylan 471 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
74 nnuz 11106 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
7573, 74syl6eleq 2558 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
76 eluzfz1 11682 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7775, 76syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7871, 50, 30, 77, 65musumsum 23189 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  1 )
7932zcnd 10956 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
8079adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  CC )
8131adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
8281nnrpd 11244 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
8382rpcnne0d 11254 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
84 divdiv1 10244 . . . . . . . . . . . . . . 15  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( ( mmu `  n )  /  n
)  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8580, 83, 40, 84syl3anc 1223 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8635adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
8738nncnd 10541 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
8838nnne0d 10569 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
8986, 87, 88divrecd 10312 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
90 nnmulcl 10548 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( n  x.  m
)  e.  NN )
9131, 37, 90syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
9291nncnd 10541 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  CC )
9391nnne0d 10569 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  =/=  0
)
9480, 92, 93divrecd 10312 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  ( n  x.  m ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
9585, 89, 943eqtr3rd 2510 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( 1  /  (
n  x.  m ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9695sumeq2dv 13474 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9736, 35, 42fsummulc2 13548 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9896, 97eqtr4d 2504 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) ) )
9998sumeq2dv 13474 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
10068, 78, 993eqtr3rd 2510 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  =  1 )
101100oveq1d 6290 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
10249, 53, 1013eqtrd 2505 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
103102adantl 466 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
10425, 26, 27, 103o1eq 13342 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O(1) ) )
10521, 104mpbii 211 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O(1) )
1065, 20, 105o1dif 13401 . . 3  |-  ( T. 
->  ( ( x  e.  RR+  |->  1 )  e.  O(1)  <-> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1) ) )
1074, 106mpbii 211 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1) )
108107trud 1383 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1374   T. wtru 1375    e. wcel 1762    =/= wne 2655   {crab 2811   _Vcvv 3106    C_ wss 3469   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   ZZcz 10853   ZZ>=cuz 11071   RR+crp 11209   ...cfz 11661   |_cfl 11884   O(1)co1 13258   sum_csu 13457    || cdivides 13836   logclog 22663   mmucmu 23089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-o1 13262  df-lo1 13263  df-sum 13458  df-ef 13654  df-e 13655  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-em 23043  df-mu 23095
This theorem is referenced by:  mulog2sumlem3  23442  selberglem1  23451
  Copyright terms: Public domain W3C validator