MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsum Structured version   Visualization version   Unicode version

Theorem mulogsum 24363
Description: Asymptotic formula for  sum_ n  <_  x ,  ( mmu ( n )  /  n ) log (
x  /  n )  =  O(1). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem mulogsum
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11309 . . . 4  |-  RR+  C_  RR
2 ax-1cn 9594 . . . 4  |-  1  e.  CC
3 o1const 13676 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O(1) )
41, 2, 3mp2an 677 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O(1)
5 1cnd 9656 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  1  e.  CC )
6 fzfid 12183 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 11825 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 468 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
9 mucl 24061 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
108, 9syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1110zred 11037 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1211, 8nndivred 10655 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
137nnrpd 11336 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
14 rpdivcl 11322 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
1513, 14sylan2 477 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
1615relogcld 23565 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1712, 16remulcld 9668 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
1817recnd 9666 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
196, 18fsumcl 13792 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
2019adantl 468 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e.  CC )
21 mulogsumlem 24362 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)
22 sumex 13747 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V
2322a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  _V )
2421a1i 11 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1) )
2523, 24o1mptrcl 13679 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
265, 20subcld 9983 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  CC )
27 1red 9655 . . . . . 6  |-  ( T. 
->  1  e.  RR )
28 elfznn 11825 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
2928ssriv 3435 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  x ) )  C_  NN
3029a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
3130sselda 3431 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
3231, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
3332zred 11037 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
3433, 31nndivred 10655 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  RR )
3534recnd 9666 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
36 fzfid 12183 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
37 elfznn 11825 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
3837adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  NN )
3938nnrpd 11336 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  RR+ )
4039rpcnne0d 11347 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
41 reccl 10274 . . . . . . . . . . . 12  |-  ( ( m  e.  CC  /\  m  =/=  0 )  -> 
( 1  /  m
)  e.  CC )
4240, 41syl 17 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4336, 42fsumcl 13792 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
44 simpl 459 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
4544, 13, 14syl2an 480 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
4645relogcld 23565 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  RR )
4746recnd 9666 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( log `  (
x  /  n ) )  e.  CC )
4835, 43, 47subdid 10071 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
4948sumeq2dv 13762 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
50 fzfid 12183 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
5135, 43mulcld 9660 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  e.  CC )
5218adantlr 720 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
5350, 51, 52fsumsub 13842 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
54 oveq2 6296 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
1  /  k )  =  ( 1  / 
( n  x.  m
) ) )
5554oveq2d 6304 . . . . . . . . . . 11  |-  ( k  =  ( n  x.  m )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
56 rpre 11305 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
5756adantr 467 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
58 ssrab2 3513 . . . . . . . . . . . . . . 15  |-  { y  e.  NN  |  y 
||  k }  C_  NN
59 simprr 765 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
6058, 59sseldi 3429 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
6160, 9syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
6261zcnd 11038 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
6328adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
6463nnrecred 10652 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  RR )
6564recnd 9666 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1  / 
k )  e.  CC )
6665adantrr 722 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
1  /  k )  e.  CC )
6762, 66mulcld 9660 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
( mmu `  n
)  x.  ( 1  /  k ) )  e.  CC )
6855, 57, 67dvdsflsumcom 24110 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) ) )
69 oveq2 6296 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
1  /  k )  =  ( 1  / 
1 ) )
70 1div1e1 10297 . . . . . . . . . . . 12  |-  ( 1  /  1 )  =  1
7169, 70syl6eq 2500 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
1  /  k )  =  1 )
72 flge1nn 12052 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7356, 72sylan 474 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
74 nnuz 11191 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
7573, 74syl6eleq 2538 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
76 eluzfz1 11803 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7775, 76syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
7871, 50, 30, 77, 65musumsum 24114 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  ( 1  /  k ) )  =  1 )
7932zcnd 11038 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
8079adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( mmu `  n )  e.  CC )
8131adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  NN )
8281nnrpd 11336 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  n  e.  RR+ )
8382rpcnne0d 11347 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
84 divdiv1 10315 . . . . . . . . . . . . . . 15  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( n  e.  CC  /\  n  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( ( mmu `  n )  /  n
)  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8580, 83, 40, 84syl3anc 1267 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( mmu `  n )  /  (
n  x.  m ) ) )
8635adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
8738nncnd 10622 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  e.  CC )
8838nnne0d 10651 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  m  =/=  0 )
8986, 87, 88divrecd 10383 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
( mmu `  n
)  /  n )  /  m )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
90 nnmulcl 10629 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( n  x.  m
)  e.  NN )
9131, 37, 90syl2an 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
9291nncnd 10622 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  CC )
9391nnne0d 10651 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( n  x.  m )  =/=  0
)
9480, 92, 93divrecd 10383 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  /  ( n  x.  m ) )  =  ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) ) )
9585, 89, 943eqtr3rd 2493 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  RR+  /\  1  <_  x
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  ->  ( (
mmu `  n )  x.  ( 1  /  (
n  x.  m ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9695sumeq2dv 13762 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9736, 35, 42fsummulc2 13838 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( mmu `  n )  /  n )  x. 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 1  /  m ) ) )
9896, 97eqtr4d 2487 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( mmu `  n )  x.  (
1  /  ( n  x.  m ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) ) )
9998sumeq2dv 13762 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( ( mmu `  n
)  x.  ( 1  /  ( n  x.  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
10068, 78, 993eqtr3rd 2493 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  =  1 )
101100oveq1d 6303 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
10249, 53, 1013eqtrd 2488 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
103102adantl 468 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  =  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
10425, 26, 27, 103o1eq 13627 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O(1) ) )
10521, 104mpbii 215 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  e.  O(1) )
1065, 20, 105o1dif 13686 . . 3  |-  ( T. 
->  ( ( x  e.  RR+  |->  1 )  e.  O(1)  <-> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1) ) )
1074, 106mpbii 215 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1) )
108107trud 1452 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 371    = wceq 1443   T. wtru 1444    e. wcel 1886    =/= wne 2621   {crab 2740   _Vcvv 3044    C_ wss 3403   class class class wbr 4401    |-> cmpt 4460   ` cfv 5581  (class class class)co 6288   CCcc 9534   RRcr 9535   0cc0 9536   1c1 9537    x. cmul 9541    <_ cle 9673    - cmin 9857    / cdiv 10266   NNcn 10606   ZZcz 10934   ZZ>=cuz 11156   RR+crp 11299   ...cfz 11781   |_cfl 12023   O(1)co1 13543   sum_csu 13745    || cdvds 14298   logclog 23497   mmucmu 24014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-disj 4373  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ioc 11637  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13123  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-limsup 13519  df-clim 13545  df-rlim 13546  df-o1 13547  df-lo1 13548  df-sum 13746  df-ef 14114  df-e 14115  df-sin 14116  df-cos 14117  df-pi 14119  df-dvds 14299  df-gcd 14462  df-prm 14616  df-pc 14780  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-fbas 18960  df-fg 18961  df-cnfld 18964  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cld 20027  df-ntr 20028  df-cls 20029  df-nei 20107  df-lp 20145  df-perf 20146  df-cn 20236  df-cnp 20237  df-haus 20324  df-tx 20570  df-hmeo 20763  df-fil 20854  df-fm 20946  df-flim 20947  df-flf 20948  df-xms 21328  df-ms 21329  df-tms 21330  df-cncf 21903  df-limc 22814  df-dv 22815  df-log 23499  df-em 23911  df-mu 24020
This theorem is referenced by:  mulog2sumlem3  24367  selberglem1  24376
  Copyright terms: Public domain W3C validator