MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnzcnopr Structured version   Unicode version

Theorem mulnzcnopr 10209
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.)
Assertion
Ref Expression
mulnzcnopr  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) : ( ( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) --> ( CC  \  {
0 } )

Proof of Theorem mulnzcnopr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-mulf 9570 . . . . 5  |-  x.  :
( CC  X.  CC )
--> CC
2 ffnov 6358 . . . . 5  |-  (  x.  : ( CC  X.  CC ) --> CC  <->  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC ) )
31, 2mpbi 211 . . . 4  |-  (  x.  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  x.  y )  e.  CC )
43simpli 459 . . 3  |-  x.  Fn  ( CC  X.  CC )
5 difss 3535 . . . 4  |-  ( CC 
\  { 0 } )  C_  CC
6 xpss12 4902 . . . 4  |-  ( ( ( CC  \  {
0 } )  C_  CC  /\  ( CC  \  { 0 } ) 
C_  CC )  -> 
( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC ) )
75, 5, 6mp2an 676 . . 3  |-  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC )
8 fnssres 5650 . . 3  |-  ( (  x.  Fn  ( CC 
X.  CC )  /\  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  C_  ( CC  X.  CC ) )  -> 
(  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) )  Fn  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )
94, 7, 8mp2an 676 . 2  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) )  Fn  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) )
10 ovres 6394 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  =  ( x  x.  y ) )
11 eldifsn 4068 . . . . . 6  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
12 eldifsn 4068 . . . . . 6  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
13 mulcl 9574 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
1413ad2ant2r 751 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  e.  CC )
15 mulne0 10205 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( x  x.  y
)  =/=  0 )
1614, 15jca 534 . . . . . 6  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( y  e.  CC  /\  y  =/=  0 ) )  -> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
1711, 12, 16syl2anb 481 . . . . 5  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( ( x  x.  y )  e.  CC  /\  ( x  x.  y )  =/=  0 ) )
18 eldifsn 4068 . . . . 5  |-  ( ( x  x.  y )  e.  ( CC  \  { 0 } )  <-> 
( ( x  x.  y )  e.  CC  /\  ( x  x.  y
)  =/=  0 ) )
1917, 18sylibr 215 . . . 4  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x  x.  y )  e.  ( CC  \  { 0 } ) )
2010, 19eqeltrd 2506 . . 3  |-  ( ( x  e.  ( CC 
\  { 0 } )  /\  y  e.  ( CC  \  {
0 } ) )  ->  ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) y )  e.  ( CC 
\  { 0 } ) )
2120rgen2a 2792 . 2  |-  A. x  e.  ( CC  \  {
0 } ) A. y  e.  ( CC  \  { 0 } ) ( x (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) y )  e.  ( CC  \  { 0 } )
22 ffnov 6358 . 2  |-  ( (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC 
\  { 0 } ) ) ) : ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) --> ( CC  \  { 0 } )  <-> 
( (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) )  Fn  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) )  /\  A. x  e.  ( CC  \  { 0 } ) A. y  e.  ( CC  \  { 0 } ) ( x (  x.  |`  (
( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) ) y )  e.  ( CC  \  {
0 } ) ) )
239, 21, 22mpbir2an 928 1  |-  (  x.  |`  ( ( CC  \  { 0 } )  X.  ( CC  \  { 0 } ) ) ) : ( ( CC  \  {
0 } )  X.  ( CC  \  {
0 } ) ) --> ( CC  \  {
0 } )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    e. wcel 1872    =/= wne 2599   A.wral 2714    \ cdif 3376    C_ wss 3379   {csn 3941    X. cxp 4794    |` cres 4798    Fn wfn 5539   -->wf 5540  (class class class)co 6249   CCcc 9488   0cc0 9490    x. cmul 9495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-po 4717  df-so 4718  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814
This theorem is referenced by:  ablomul  26025  mulid  26026
  Copyright terms: Public domain W3C validator