MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnqf Structured version   Unicode version

Theorem mulnqf 9359
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulnqf  |-  .Q  :
( Q.  X.  Q. )
--> Q.

Proof of Theorem mulnqf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nqerf 9340 . . . 4  |-  /Q :
( N.  X.  N. )
--> Q.
2 mulpqf 9356 . . . 4  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3 fco 5726 . . . 4  |-  ( ( /Q : ( N. 
X.  N. ) --> Q.  /\  .pQ 
: ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. ) )  ->  ( /Q  o.  .pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q. )
41, 2, 3mp2an 672 . . 3  |-  ( /Q  o.  .pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q.
5 elpqn 9335 . . . . 5  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
65ssriv 3448 . . . 4  |-  Q.  C_  ( N.  X.  N. )
7 xpss12 4931 . . . 4  |-  ( ( Q.  C_  ( N.  X.  N. )  /\  Q.  C_  ( N.  X.  N. ) )  ->  ( Q.  X.  Q. )  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
86, 6, 7mp2an 672 . . 3  |-  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
9 fssres 5736 . . 3  |-  ( ( ( /Q  o.  .pQ  ) : ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> Q.  /\  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  .pQ  )  |`  ( Q. 
X.  Q. ) ) : ( Q.  X.  Q. )
--> Q. )
104, 8, 9mp2an 672 . 2  |-  ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q.
11 df-mq 9325 . . 3  |-  .Q  =  ( ( /Q  o.  .pQ  )  |`  ( Q. 
X.  Q. ) )
1211feq1i 5708 . 2  |-  (  .Q  : ( Q.  X.  Q. ) --> Q.  <->  ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q. )
1310, 12mpbir 211 1  |-  .Q  :
( Q.  X.  Q. )
--> Q.
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3416    X. cxp 4823    |` cres 4827    o. ccom 4829   -->wf 5567   N.cnpi 9254    .pQ cmpq 9259   Q.cnq 9262   /Qcerq 9264    .Q cmq 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-omul 7174  df-er 7350  df-ni 9282  df-mi 9284  df-lti 9285  df-mpq 9319  df-enq 9321  df-nq 9322  df-erq 9323  df-mq 9325  df-1nq 9326
This theorem is referenced by:  mulcomnq  9363  mulerpq  9367  mulassnq  9369  distrnq  9371  recmulnq  9374  recclnq  9376  dmrecnq  9378  ltmnq  9382  prlem936  9457
  Copyright terms: Public domain W3C validator