MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg2d Structured version   Unicode version

Theorem mulneg2d 10017
Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
mulneg2d  |-  ( ph  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)

Proof of Theorem mulneg2d
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 mulneg2 10001 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1383    e. wcel 1804  (class class class)co 6281   CCcc 9493    x. cmul 9500   -ucneg 9811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-ltxr 9636  df-sub 9812  df-neg 9813
This theorem is referenced by:  prodge0  10396  expmulz  12194  discr  12285  sincossq  13893  oexpneg  14031  mulgass  16151  zringlpirlem3  18489  zlpirlem3  18494  pjthlem1  21830  dvfsum2  22413  vieta1  22686  advlogexp  23014  logccv  23022  cxpmul2z  23050  abscxpbnd  23105  isosctrlem3  23132  dcubic1lem  23152  mcubic  23156  amgmlem  23297  ftalem5  23328  pntrlog2bndlem2  23741  brbtwn2  24186  colinearalglem4  24190  gxmodid  25259  pjhthlem1  26287  areacirclem1  30083  pellexlem6  30746  pell1234qrreccl  30766  pell14qrdich  30781  rmxyneg  30832  rmxm1  30846  cosknegpi  31623  itgsinexplem1  31706  dirkerper  31832  sqwvfoura  31965  etransclem46  32017  2zrngagrp  32576
  Copyright terms: Public domain W3C validator