MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg1d Unicode version

Theorem mulneg1d 9112
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
mulneg1d  |-  ( ph  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )

Proof of Theorem mulneg1d
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 mulneg1 9096 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )
41, 2, 3syl2anc 645 1  |-  ( ph  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621  (class class class)co 5710   CCcc 8615    x. cmul 8622   -ucneg 8918
This theorem is referenced by:  divsubdiv  9356  recgt0  9480  xmulneg1  10467  expmulz  11026  discr1  11115  iseraltlem3  12033  mulgass  14432  mbfmulc2lem  18834  mbfmulc2  18850  itg2monolem1  18937  itgmulc2  19020  dvexp3  19157  dvfsumlem2  19206  aaliou3lem2  19555  advlogexp  19834  logtayl2  19841  dcubic2  19972  dcubic  19974  ftalem5  20146  lgsdilem  20393  2sqlem4  20438  pntrsumo1  20546  pntrlog2bndlem4  20561  brbtwn2  23707  colinearalglem4  23711  axeuclidlem  23764  pellexlem6  26085  jm2.19lem1  26248  jm2.19lem4  26251  jm2.19  26252
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920
  Copyright terms: Public domain W3C validator