MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1gsum2 Structured version   Unicode version

Theorem mulmarep1gsum2 19161
Description: The sum of element by element multiplications of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 18-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a  |-  A  =  ( N Mat  R )
marepvcl.b  |-  B  =  ( Base `  A
)
marepvcl.v  |-  V  =  ( ( Base `  R
)  ^m  N )
ma1repvcl.1  |-  .1.  =  ( 1r `  A )
mulmarep1el.0  |-  .0.  =  ( 0g `  R )
mulmarep1el.e  |-  E  =  ( (  .1.  ( N matRepV  R ) C ) `
 K )
mulmarep1gsum2.x  |-  .X.  =  ( R maVecMul  <. N ,  N >. )
Assertion
Ref Expression
mulmarep1gsum2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r `  R ) ( l E J ) ) ) )  =  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) ) )
Distinct variable groups:    B, l    C, l    I, l    J, l    K, l    N, l    R, l    V, l    X, l    .0. , l    A, l    Z, l    .X. , l
Allowed substitution hints:    .1. ( l)    E( l)

Proof of Theorem mulmarep1gsum2
StepHypRef Expression
1 simp1 994 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  R  e.  Ring )
21adantr 463 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  R  e.  Ring )
3 simpl2 998 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
) )
4 simp1 994 . . . . . . . . . . . . 13  |-  ( ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z )  ->  I  e.  N )
543ad2ant3 1017 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  I  e.  N )
65adantr 463 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  I  e.  N )
7 simpl32 1076 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  J  e.  N )
8 simpr 459 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  l  e.  N )
96, 7, 83jca 1174 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  ( I  e.  N  /\  J  e.  N  /\  l  e.  N
) )
102, 3, 93jca 1174 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  l  e.  N )  ->  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  l  e.  N ) ) )
1110adantll 711 . . . . . . . 8  |-  ( ( ( J  =  K  /\  ( R  e. 
Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  (
I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z ) ) )  /\  l  e.  N )  ->  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  l  e.  N
) ) )
12 marepvcl.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
13 marepvcl.b . . . . . . . . 9  |-  B  =  ( Base `  A
)
14 marepvcl.v . . . . . . . . 9  |-  V  =  ( ( Base `  R
)  ^m  N )
15 ma1repvcl.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  A )
16 mulmarep1el.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
17 mulmarep1el.e . . . . . . . . 9  |-  E  =  ( (  .1.  ( N matRepV  R ) C ) `
 K )
1812, 13, 14, 15, 16, 17mulmarep1el 19159 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  l  e.  N
) )  ->  (
( I X l ) ( .r `  R ) ( l E J ) )  =  if ( J  =  K ,  ( ( I X l ) ( .r `  R ) ( C `
 l ) ) ,  if ( J  =  l ,  ( I X l ) ,  .0.  ) ) )
1911, 18syl 16 . . . . . . 7  |-  ( ( ( J  =  K  /\  ( R  e. 
Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  (
I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z ) ) )  /\  l  e.  N )  ->  (
( I X l ) ( .r `  R ) ( l E J ) )  =  if ( J  =  K ,  ( ( I X l ) ( .r `  R ) ( C `
 l ) ) ,  if ( J  =  l ,  ( I X l ) ,  .0.  ) ) )
20 iftrue 3863 . . . . . . . . 9  |-  ( J  =  K  ->  if ( J  =  K ,  ( ( I X l ) ( .r `  R ) ( C `  l
) ) ,  if ( J  =  l ,  ( I X l ) ,  .0.  ) )  =  ( ( I X l ) ( .r `  R ) ( C `
 l ) ) )
2120adantr 463 . . . . . . . 8  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  if ( J  =  K ,  ( ( I X l ) ( .r `  R ) ( C `
 l ) ) ,  if ( J  =  l ,  ( I X l ) ,  .0.  ) )  =  ( ( I X l ) ( .r `  R ) ( C `  l
) ) )
2221adantr 463 . . . . . . 7  |-  ( ( ( J  =  K  /\  ( R  e. 
Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  (
I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z ) ) )  /\  l  e.  N )  ->  if ( J  =  K ,  ( ( I X l ) ( .r `  R ) ( C `  l
) ) ,  if ( J  =  l ,  ( I X l ) ,  .0.  ) )  =  ( ( I X l ) ( .r `  R ) ( C `
 l ) ) )
2319, 22eqtrd 2423 . . . . . 6  |-  ( ( ( J  =  K  /\  ( R  e. 
Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  (
I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z ) ) )  /\  l  e.  N )  ->  (
( I X l ) ( .r `  R ) ( l E J ) )  =  ( ( I X l ) ( .r `  R ) ( C `  l
) ) )
2423mpteq2dva 4453 . . . . 5  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( l  e.  N  |->  ( ( I X l ) ( .r `  R ) ( l E J ) ) )  =  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( C `  l ) ) ) )
2524oveq2d 6212 . . . 4  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r `  R
) ( l E J ) ) ) )  =  ( R 
gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( C `  l ) ) ) ) )
26 fveq1 5773 . . . . . . . . 9  |-  ( ( X  .X.  C )  =  Z  ->  ( ( X  .X.  C ) `  I )  =  ( Z `  I ) )
2726eqcomd 2390 . . . . . . . 8  |-  ( ( X  .X.  C )  =  Z  ->  ( Z `
 I )  =  ( ( X  .X.  C ) `  I
) )
28273ad2ant3 1017 . . . . . . 7  |-  ( ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C )  =  Z )  -> 
( Z `  I
)  =  ( ( X  .X.  C ) `  I ) )
29283ad2ant3 1017 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  ( Z `  I )  =  ( ( X  .X.  C
) `  I )
)
3029adantl 464 . . . . 5  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( Z `  I )  =  ( ( X  .X.  C
) `  I )
)
31 mulmarep1gsum2.x . . . . . 6  |-  .X.  =  ( R maVecMul  <. N ,  N >. )
32 eqid 2382 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
33 eqid 2382 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
341adantl 464 . . . . . 6  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  R  e.  Ring )
3512, 13matrcl 18999 . . . . . . . . . 10  |-  ( X  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
3635simpld 457 . . . . . . . . 9  |-  ( X  e.  B  ->  N  e.  Fin )
37363ad2ant1 1015 . . . . . . . 8  |-  ( ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  ->  N  e.  Fin )
38373ad2ant2 1016 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  N  e.  Fin )
3938adantl 464 . . . . . 6  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  N  e.  Fin )
4013eleq2i 2460 . . . . . . . . . 10  |-  ( X  e.  B  <->  X  e.  ( Base `  A )
)
4140biimpi 194 . . . . . . . . 9  |-  ( X  e.  B  ->  X  e.  ( Base `  A
) )
42413ad2ant1 1015 . . . . . . . 8  |-  ( ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  ->  X  e.  ( Base `  A ) )
43423ad2ant2 1016 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  X  e.  ( Base `  A )
)
4443adantl 464 . . . . . 6  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  X  e.  (
Base `  A )
)
4514eleq2i 2460 . . . . . . . . . 10  |-  ( C  e.  V  <->  C  e.  ( ( Base `  R
)  ^m  N )
)
4645biimpi 194 . . . . . . . . 9  |-  ( C  e.  V  ->  C  e.  ( ( Base `  R
)  ^m  N )
)
47463ad2ant2 1016 . . . . . . . 8  |-  ( ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  ->  C  e.  ( (
Base `  R )  ^m  N ) )
48473ad2ant2 1016 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  C  e.  ( ( Base `  R
)  ^m  N )
)
4948adantl 464 . . . . . 6  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  C  e.  ( ( Base `  R
)  ^m  N )
)
505adantl 464 . . . . . 6  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  I  e.  N
)
5112, 31, 32, 33, 34, 39, 44, 49, 50mavmulfv 19133 . . . . 5  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( ( X 
.X.  C ) `  I )  =  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( C `  l ) ) ) ) )
5230, 51eqtrd 2423 . . . 4  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( Z `  I )  =  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( C `  l ) ) ) ) )
53 iftrue 3863 . . . . . 6  |-  ( J  =  K  ->  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) )  =  ( Z `
 I ) )
5453eqcomd 2390 . . . . 5  |-  ( J  =  K  ->  ( Z `  I )  =  if ( J  =  K ,  ( Z `
 I ) ,  ( I X J ) ) )
5554adantr 463 . . . 4  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( Z `  I )  =  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) ) )
5625, 52, 553eqtr2d 2429 . . 3  |-  ( ( J  =  K  /\  ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) ) )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r `  R
) ( l E J ) ) ) )  =  if ( J  =  K , 
( Z `  I
) ,  ( I X J ) ) )
5756ex 432 . 2  |-  ( J  =  K  ->  (
( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  -> 
( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( l E J ) ) ) )  =  if ( J  =  K ,  ( Z `
 I ) ,  ( I X J ) ) ) )
581adantr 463 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  ->  R  e.  Ring )
59 simpl2 998 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  -> 
( X  e.  B  /\  C  e.  V  /\  K  e.  N
) )
605adantr 463 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  ->  I  e.  N )
61 simpl32 1076 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  ->  J  e.  N )
62 simpr 459 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  ->  J  =/=  K )
6312, 13, 14, 15, 16, 17mulmarep1gsum1 19160 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  J  =/=  K
) )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( l E J ) ) ) )  =  ( I X J ) )
6458, 59, 60, 61, 62, 63syl113anc 1238 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  -> 
( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( l E J ) ) ) )  =  ( I X J ) )
65 df-ne 2579 . . . . . 6  |-  ( J  =/=  K  <->  -.  J  =  K )
66 iffalse 3866 . . . . . . 7  |-  ( -.  J  =  K  ->  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) )  =  ( I X J ) )
6766eqcomd 2390 . . . . . 6  |-  ( -.  J  =  K  -> 
( I X J )  =  if ( J  =  K , 
( Z `  I
) ,  ( I X J ) ) )
6865, 67sylbi 195 . . . . 5  |-  ( J  =/=  K  ->  (
I X J )  =  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) ) )
6968adantl 464 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  -> 
( I X J )  =  if ( J  =  K , 
( Z `  I
) ,  ( I X J ) ) )
7064, 69eqtrd 2423 . . 3  |-  ( ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  /\  J  =/=  K )  -> 
( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( l E J ) ) ) )  =  if ( J  =  K ,  ( Z `
 I ) ,  ( I X J ) ) )
7170expcom 433 . 2  |-  ( J  =/=  K  ->  (
( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N
)  /\  ( I  e.  N  /\  J  e.  N  /\  ( X 
.X.  C )  =  Z ) )  -> 
( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r
`  R ) ( l E J ) ) ) )  =  if ( J  =  K ,  ( Z `
 I ) ,  ( I X J ) ) ) )
7257, 71pm2.61ine 2695 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  C  e.  V  /\  K  e.  N )  /\  ( I  e.  N  /\  J  e.  N  /\  ( X  .X.  C
)  =  Z ) )  ->  ( R  gsumg  ( l  e.  N  |->  ( ( I X l ) ( .r `  R ) ( l E J ) ) ) )  =  if ( J  =  K ,  ( Z `  I ) ,  ( I X J ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   _Vcvv 3034   ifcif 3857   <.cop 3950    |-> cmpt 4425   ` cfv 5496  (class class class)co 6196    ^m cmap 7338   Fincfn 7435   Basecbs 14634   .rcmulr 14703   0gc0g 14847    gsumg cgsu 14848   1rcur 17266   Ringcrg 17311   Mat cmat 18994   maVecMul cmvmul 19127   matRepV cmatrepV 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-ot 3953  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-sup 7816  df-oi 7850  df-card 8233  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-fz 11594  df-fzo 11718  df-seq 12011  df-hash 12308  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-hom 14726  df-cco 14727  df-0g 14849  df-gsum 14850  df-prds 14855  df-pws 14857  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-mhm 16083  df-submnd 16084  df-grp 16174  df-minusg 16175  df-sbg 16176  df-mulg 16177  df-subg 16315  df-ghm 16382  df-cntz 16472  df-cmn 16917  df-abl 16918  df-mgp 17255  df-ur 17267  df-ring 17313  df-subrg 17540  df-lmod 17627  df-lss 17692  df-sra 17931  df-rgmod 17932  df-dsmm 18854  df-frlm 18869  df-mamu 18971  df-mat 18995  df-mvmul 19128  df-marepv 19146
This theorem is referenced by:  cramerimplem2  19271
  Copyright terms: Public domain W3C validator