Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullimc Structured version   Visualization version   Unicode version

Theorem mullimc 37690
Description: Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mullimc.f  |-  F  =  ( x  e.  A  |->  B )
mullimc.g  |-  G  =  ( x  e.  A  |->  C )
mullimc.h  |-  H  =  ( x  e.  A  |->  ( B  x.  C
) )
mullimc.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
mullimc.c  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
mullimc.x  |-  ( ph  ->  X  e.  ( F lim
CC  D ) )
mullimc.y  |-  ( ph  ->  Y  e.  ( G lim
CC  D ) )
Assertion
Ref Expression
mullimc  |-  ( ph  ->  ( X  x.  Y
)  e.  ( H lim
CC  D ) )
Distinct variable groups:    x, A    x, D    x, X    ph, x
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)    H( x)    Y( x)

Proof of Theorem mullimc
Dummy variables  a 
b  e  f  y  z  w  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 22823 . . . 4  |-  ( F lim
CC  D )  C_  CC
2 mullimc.x . . . 4  |-  ( ph  ->  X  e.  ( F lim
CC  D ) )
31, 2sseldi 3429 . . 3  |-  ( ph  ->  X  e.  CC )
4 limccl 22823 . . . 4  |-  ( G lim
CC  D )  C_  CC
5 mullimc.y . . . 4  |-  ( ph  ->  Y  e.  ( G lim
CC  D ) )
64, 5sseldi 3429 . . 3  |-  ( ph  ->  Y  e.  CC )
73, 6mulcld 9660 . 2  |-  ( ph  ->  ( X  x.  Y
)  e.  CC )
8 simpr 463 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  w  e.  RR+ )
93adantr 467 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  X  e.  CC )
106adantr 467 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  Y  e.  CC )
11 mulcn2 13652 . . . . 5  |-  ( ( w  e.  RR+  /\  X  e.  CC  /\  Y  e.  CC )  ->  E. a  e.  RR+  E. b  e.  RR+  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )
128, 9, 10, 11syl3anc 1267 . . . 4  |-  ( (
ph  /\  w  e.  RR+ )  ->  E. a  e.  RR+  E. b  e.  RR+  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )
13 mullimc.b . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
14 mullimc.f . . . . . . . . . . . . . . . . 17  |-  F  =  ( x  e.  A  |->  B )
1513, 14fmptd 6044 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> CC )
1614, 13dmmptd 5706 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  A )
17 limcrcl 22822 . . . . . . . . . . . . . . . . . . 19  |-  ( X  e.  ( F lim CC  D )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
182, 17syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  D  e.  CC ) )
1918simp2d 1020 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  C_  CC )
2016, 19eqsstr3d 3466 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  C_  CC )
2118simp3d 1021 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  CC )
2215, 20, 21ellimc3 22827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  ( F lim CC  D )  <-> 
( X  e.  CC  /\ 
A. a  e.  RR+  E. e  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) ) ) )
232, 22mpbid 214 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  e.  CC  /\ 
A. a  e.  RR+  E. e  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) ) )
2423simprd 465 . . . . . . . . . . . . 13  |-  ( ph  ->  A. a  e.  RR+  E. e  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )
2524r19.21bi 2756 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  RR+ )  ->  E. e  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a ) )
2625adantrr 722 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  E. e  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a ) )
27 mullimc.c . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
28 mullimc.g . . . . . . . . . . . . . . . . 17  |-  G  =  ( x  e.  A  |->  C )
2927, 28fmptd 6044 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : A --> CC )
3029, 20, 21ellimc3 22827 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y  e.  ( G lim CC  D )  <-> 
( Y  e.  CC  /\ 
A. b  e.  RR+  E. f  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) ) )
315, 30mpbid 214 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  e.  CC  /\ 
A. b  e.  RR+  E. f  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
3231simprd 465 . . . . . . . . . . . . 13  |-  ( ph  ->  A. b  e.  RR+  E. f  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )
3332r19.21bi 2756 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  RR+ )  ->  E. f  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
f )  ->  ( abs `  ( ( G `
 z )  -  Y ) )  < 
b ) )
3433adantrl 721 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  E. f  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
f )  ->  ( abs `  ( ( G `
 z )  -  Y ) )  < 
b ) )
35 reeanv 2957 . . . . . . . . . . 11  |-  ( E. e  e.  RR+  E. f  e.  RR+  ( A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
f )  ->  ( abs `  ( ( G `
 z )  -  Y ) )  < 
b ) )  <->  ( E. e  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a )  /\  E. f  e.  RR+  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  f
)  ->  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) ) )
3626, 34, 35sylanbrc 669 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  E. e  e.  RR+  E. f  e.  RR+  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
37 ifcl 3922 . . . . . . . . . . . . . 14  |-  ( ( e  e.  RR+  /\  f  e.  RR+ )  ->  if ( e  <_  f ,  e ,  f )  e.  RR+ )
38373ad2ant2 1029 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  if ( e  <_  f ,  e ,  f )  e.  RR+ )
39 nfv 1760 . . . . . . . . . . . . . . 15  |-  F/ z ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )
40 nfv 1760 . . . . . . . . . . . . . . 15  |-  F/ z ( e  e.  RR+  /\  f  e.  RR+ )
41 nfra1 2768 . . . . . . . . . . . . . . . 16  |-  F/ z A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)
42 nfra1 2768 . . . . . . . . . . . . . . . 16  |-  F/ z A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  f
)  ->  ( abs `  ( ( G `  z )  -  Y
) )  <  b
)
4341, 42nfan 2010 . . . . . . . . . . . . . . 15  |-  F/ z ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) )
4439, 40, 43nf3an 2012 . . . . . . . . . . . . . 14  |-  F/ z ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
45 simp11l 1118 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ph )
46 simp1rl 1072 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  a  e.  RR+ )
47463ad2ant1 1028 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  a  e.  RR+ )
4845, 47jca 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( ph  /\  a  e.  RR+ )
)
49 simp12 1038 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( e  e.  RR+  /\  f  e.  RR+ ) )
50 simp13l 1122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )
5148, 49, 50jca31 537 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( (
( ph  /\  a  e.  RR+ )  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  e )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  a ) ) )
52 simp1r 1032 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
) )
53 simp2 1008 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  z  e.  A
)
54 simp3l 1035 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  z  =/=  D
)
55 simplll 767 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  ->  ph )
56553ad2ant1 1028 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ph )
57 simp1lr 1071 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( e  e.  RR+  /\  f  e.  RR+ ) )
58 simp3r 1036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
z  -  D ) )  <  if ( e  <_  f , 
e ,  f ) )
59 simp1l 1031 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ph )
60 simp2 1008 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  z  e.  A
)
6120sselda 3431 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  CC )
6259, 60, 61syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  z  e.  CC )
6359, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  D  e.  CC )
6462, 63subcld 9983 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( z  -  D )  e.  CC )
6564abscld 13491 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( abs `  (
z  -  D ) )  e.  RR )
66 rpre 11305 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( e  e.  RR+  ->  e  e.  RR )
6766ad2antrl 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( e  e.  RR+  /\  f  e.  RR+ ) )  ->  e  e.  RR )
68673ad2ant1 1028 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  e  e.  RR )
69 rpre 11305 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  e.  RR+  ->  f  e.  RR )
7069ad2antll 734 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( e  e.  RR+  /\  f  e.  RR+ ) )  ->  f  e.  RR )
71703ad2ant1 1028 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  f  e.  RR )
7268, 71ifcld 3923 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  if ( e  <_  f ,  e ,  f )  e.  RR )
73 simp3 1009 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( abs `  (
z  -  D ) )  <  if ( e  <_  f , 
e ,  f ) )
74 min1 11480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( e  e.  RR  /\  f  e.  RR )  ->  if ( e  <_ 
f ,  e ,  f )  <_  e
)
7568, 71, 74syl2anc 666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  if ( e  <_  f ,  e ,  f )  <_ 
e )
7665, 72, 68, 73, 75ltletrd 9792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( abs `  (
z  -  D ) )  <  e )
7756, 57, 53, 58, 76syl211anc 1273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
z  -  D ) )  <  e )
7854, 77jca 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
) )
79 rsp 2753 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  e )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  a )  ->  ( z  e.  A  ->  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) ) )
8052, 53, 78, 79syl3c 63 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
( F `  z
)  -  X ) )  <  a )
8151, 80syld3an1 1313 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)
82 simp1l 1031 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  ph )
8382, 46jca 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  ( ph  /\  a  e.  RR+ ) )
84 simp2 1008 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  (
e  e.  RR+  /\  f  e.  RR+ ) )
85 simp3r 1036 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )
8683, 84, 85jca31 537 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  (
( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
87 simp1r 1032 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  f
)  ->  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )
88 simp2 1008 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  z  e.  A
)
89 simp3l 1035 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  z  =/=  D
)
90 simplll 767 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  ->  ph )
91903ad2ant1 1028 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ph )
92 simp1lr 1071 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( e  e.  RR+  /\  f  e.  RR+ ) )
93 simp3r 1036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
z  -  D ) )  <  if ( e  <_  f , 
e ,  f ) )
94 min2 11481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( e  e.  RR  /\  f  e.  RR )  ->  if ( e  <_ 
f ,  e ,  f )  <_  f
)
9568, 71, 94syl2anc 666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  if ( e  <_  f ,  e ,  f )  <_ 
f )
9665, 72, 71, 73, 95ltletrd 9792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
e  e.  RR+  /\  f  e.  RR+ ) )  /\  z  e.  A  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( abs `  (
z  -  D ) )  <  f )
9791, 92, 88, 93, 96syl211anc 1273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
z  -  D ) )  <  f )
9889, 97jca 535 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  f
) )
99 rsp 2753 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b )  ->  ( z  e.  A  ->  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
10087, 88, 98, 99syl3c 63 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( e  e.  RR+  /\  f  e.  RR+ )
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  /\  z  e.  A  /\  ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
if ( e  <_ 
f ,  e ,  f ) ) )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b )
10186, 100syl3an1 1300 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( abs `  ( ( G `  z )  -  Y
) )  <  b
)
10281, 101jca 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  b  e.  RR+ )
)  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  e
)  ->  ( abs `  ( ( F `  z )  -  X
) )  <  a
)  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  f )  -> 
( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) ) )  ->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )
1031023exp 1206 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  (
z  e.  A  -> 
( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) )
10444, 103ralrimi 2787 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  if ( e  <_  f ,  e ,  f ) )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
105 breq2 4405 . . . . . . . . . . . . . . . . 17  |-  ( y  =  if ( e  <_  f ,  e ,  f )  -> 
( ( abs `  (
z  -  D ) )  <  y  <->  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) ) )
106105anbi2d 709 . . . . . . . . . . . . . . . 16  |-  ( y  =  if ( e  <_  f ,  e ,  f )  -> 
( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  y
)  <->  ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) ) ) )
107106imbi1d 319 . . . . . . . . . . . . . . 15  |-  ( y  =  if ( e  <_  f ,  e ,  f )  -> 
( ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) )  <-> 
( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) )
108107ralbidv 2826 . . . . . . . . . . . . . 14  |-  ( y  =  if ( e  <_  f ,  e ,  f )  -> 
( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) )  <->  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) )
109108rspcev 3149 . . . . . . . . . . . . 13  |-  ( ( if ( e  <_ 
f ,  e ,  f )  e.  RR+  /\ 
A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  if ( e  <_  f ,  e ,  f ) )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )
11038, 104, 109syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  /\  ( e  e.  RR+  /\  f  e.  RR+ )  /\  ( A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
e )  ->  ( abs `  ( ( F `
 z )  -  X ) )  < 
a )  /\  A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  f )  ->  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )
1111103exp 1206 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  (
( e  e.  RR+  /\  f  e.  RR+ )  ->  ( ( A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
f )  ->  ( abs `  ( ( G `
 z )  -  Y ) )  < 
b ) )  ->  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) ) )
112111rexlimdvv 2884 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  ( E. e  e.  RR+  E. f  e.  RR+  ( A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  e )  -> 
( abs `  (
( F `  z
)  -  X ) )  <  a )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
f )  ->  ( abs `  ( ( G `
 z )  -  Y ) )  < 
b ) )  ->  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) )
11336, 112mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR+  /\  b  e.  RR+ ) )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  (
( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )
114113adantlr 720 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  (
a  e.  RR+  /\  b  e.  RR+ ) )  ->  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )
1151143adant3 1027 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  (
a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  ->  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )
116 nfv 1760 . . . . . . . . . . 11  |-  F/ z ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )
117 nfra1 2768 . . . . . . . . . . 11  |-  F/ z A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  y
)  ->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )
118116, 117nfan 2010 . . . . . . . . . 10  |-  F/ z ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )
119 simp1l 1031 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  (
a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  ->  ph )
120119ad2antrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )  ->  ph )
1211203ad2ant1 1028 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ph )
122 simp2 1008 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  z  e.  A
)
123 nfv 1760 . . . . . . . . . . . . . . . . 17  |-  F/ x
( ph  /\  z  e.  A )
124 mullimc.h . . . . . . . . . . . . . . . . . . . 20  |-  H  =  ( x  e.  A  |->  ( B  x.  C
) )
125 nfmpt1 4491 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x
( x  e.  A  |->  ( B  x.  C
) )
126124, 125nfcxfr 2589 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x H
127 nfcv 2591 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
z
128126, 127nffv 5870 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
( H `  z
)
129 nfmpt1 4491 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
( x  e.  A  |->  B )
13014, 129nfcxfr 2589 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x F
131130, 127nffv 5870 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( F `  z
)
132 nfcv 2591 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x  x.
133 nfmpt1 4491 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
( x  e.  A  |->  C )
13428, 133nfcxfr 2589 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x G
135134, 127nffv 5870 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( G `  z
)
136131, 132, 135nfov 6314 . . . . . . . . . . . . . . . . . 18  |-  F/_ x
( ( F `  z )  x.  ( G `  z )
)
137128, 136nfeq 2602 . . . . . . . . . . . . . . . . 17  |-  F/ x
( H `  z
)  =  ( ( F `  z )  x.  ( G `  z ) )
138123, 137nfim 2002 . . . . . . . . . . . . . . . 16  |-  F/ x
( ( ph  /\  z  e.  A )  ->  ( H `  z
)  =  ( ( F `  z )  x.  ( G `  z ) ) )
139 eleq1 2516 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
140139anbi2d 709 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  z  e.  A ) ) )
141 fveq2 5863 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  ( H `  x )  =  ( H `  z ) )
142 fveq2 5863 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
143 fveq2 5863 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
144142, 143oveq12d 6306 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( F `  x
)  x.  ( G `
 x ) )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
145141, 144eqeq12d 2465 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( H `  x
)  =  ( ( F `  x )  x.  ( G `  x ) )  <->  ( H `  z )  =  ( ( F `  z
)  x.  ( G `
 z ) ) ) )
146140, 145imbi12d 322 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( ( ph  /\  x  e.  A )  ->  ( H `  x
)  =  ( ( F `  x )  x.  ( G `  x ) ) )  <-> 
( ( ph  /\  z  e.  A )  ->  ( H `  z
)  =  ( ( F `  z )  x.  ( G `  z ) ) ) ) )
147 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
14813, 27mulcld 9660 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  e.  CC )
149124fvmpt2 5955 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  A  /\  ( B  x.  C
)  e.  CC )  ->  ( H `  x )  =  ( B  x.  C ) )
150147, 148, 149syl2anc 666 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  ( B  x.  C ) )
15114fvmpt2 5955 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  A  /\  B  e.  CC )  ->  ( F `  x
)  =  B )
152147, 13, 151syl2anc 666 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
153152eqcomd 2456 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( F `  x ) )
15428fvmpt2 5955 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  A  /\  C  e.  CC )  ->  ( G `  x
)  =  C )
155147, 27, 154syl2anc 666 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
156155eqcomd 2456 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  C  =  ( G `  x ) )
157153, 156oveq12d 6306 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  ( B  x.  C )  =  ( ( F `
 x )  x.  ( G `  x
) ) )
158150, 157eqtrd 2484 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( H `  x )  =  ( ( F `
 x )  x.  ( G `  x
) ) )
159138, 146, 158chvar 2105 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  A )  ->  ( H `  z )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
160159oveq1d 6303 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  A )  ->  (
( H `  z
)  -  ( X  x.  Y ) )  =  ( ( ( F `  z )  x.  ( G `  z ) )  -  ( X  x.  Y
) ) )
161160fveq2d 5867 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  A )  ->  ( abs `  ( ( H `
 z )  -  ( X  x.  Y
) ) )  =  ( abs `  (
( ( F `  z )  x.  ( G `  z )
)  -  ( X  x.  Y ) ) ) )
162121, 122, 161syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  =  ( abs `  ( ( ( F `
 z )  x.  ( G `  z
) )  -  ( X  x.  Y )
) ) )
16315ffvelrnda 6020 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
16429ffvelrnda 6020 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  A )  ->  ( G `  z )  e.  CC )
165163, 164jca 535 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  A )  ->  (
( F `  z
)  e.  CC  /\  ( G `  z )  e.  CC ) )
166121, 122, 165syl2anc 666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( ( F `
 z )  e.  CC  /\  ( G `
 z )  e.  CC ) )
167 simpll3 1048 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )  ->  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )
1681673ad2ant1 1028 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )
169 rsp 2753 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  ->  ( z  e.  A  ->  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) ) )
1701693imp 1201 . . . . . . . . . . . . . 14  |-  ( ( A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  y
)  ->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) )
1711703adant1l 1259 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) )
172 oveq1 6295 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ( F `  z )  ->  (
c  -  X )  =  ( ( F `
 z )  -  X ) )
173172fveq2d 5867 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( F `  z )  ->  ( abs `  ( c  -  X ) )  =  ( abs `  (
( F `  z
)  -  X ) ) )
174173breq1d 4411 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( F `  z )  ->  (
( abs `  (
c  -  X ) )  <  a  <->  ( abs `  ( ( F `  z )  -  X
) )  <  a
) )
175174anbi1d 710 . . . . . . . . . . . . . . 15  |-  ( c  =  ( F `  z )  ->  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  <->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( d  -  Y
) )  <  b
) ) )
176 oveq1 6295 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ( F `  z )  ->  (
c  x.  d )  =  ( ( F `
 z )  x.  d ) )
177176oveq1d 6303 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ( F `  z )  ->  (
( c  x.  d
)  -  ( X  x.  Y ) )  =  ( ( ( F `  z )  x.  d )  -  ( X  x.  Y
) ) )
178177fveq2d 5867 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( F `  z )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  =  ( abs `  (
( ( F `  z )  x.  d
)  -  ( X  x.  Y ) ) ) )
179178breq1d 4411 . . . . . . . . . . . . . . 15  |-  ( c  =  ( F `  z )  ->  (
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w  <->  ( abs `  ( ( ( F `
 z )  x.  d )  -  ( X  x.  Y )
) )  <  w
) )
180175, 179imbi12d 322 . . . . . . . . . . . . . 14  |-  ( c  =  ( F `  z )  ->  (
( ( ( abs `  ( c  -  X
) )  <  a  /\  ( abs `  (
d  -  Y ) )  <  b )  ->  ( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w )  <-> 
( ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
d  -  Y ) )  <  b )  ->  ( abs `  (
( ( F `  z )  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) ) )
181 oveq1 6295 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( G `  z )  ->  (
d  -  Y )  =  ( ( G `
 z )  -  Y ) )
182181fveq2d 5867 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( G `  z )  ->  ( abs `  ( d  -  Y ) )  =  ( abs `  (
( G `  z
)  -  Y ) ) )
183182breq1d 4411 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( G `  z )  ->  (
( abs `  (
d  -  Y ) )  <  b  <->  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )
184183anbi2d 709 . . . . . . . . . . . . . . 15  |-  ( d  =  ( G `  z )  ->  (
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  <->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) ) )
185 oveq2 6296 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  ( G `  z )  ->  (
( F `  z
)  x.  d )  =  ( ( F `
 z )  x.  ( G `  z
) ) )
186185oveq1d 6303 . . . . . . . . . . . . . . . . 17  |-  ( d  =  ( G `  z )  ->  (
( ( F `  z )  x.  d
)  -  ( X  x.  Y ) )  =  ( ( ( F `  z )  x.  ( G `  z ) )  -  ( X  x.  Y
) ) )
187186fveq2d 5867 . . . . . . . . . . . . . . . 16  |-  ( d  =  ( G `  z )  ->  ( abs `  ( ( ( F `  z )  x.  d )  -  ( X  x.  Y
) ) )  =  ( abs `  (
( ( F `  z )  x.  ( G `  z )
)  -  ( X  x.  Y ) ) ) )
188187breq1d 4411 . . . . . . . . . . . . . . 15  |-  ( d  =  ( G `  z )  ->  (
( abs `  (
( ( F `  z )  x.  d
)  -  ( X  x.  Y ) ) )  <  w  <->  ( abs `  ( ( ( F `
 z )  x.  ( G `  z
) )  -  ( X  x.  Y )
) )  <  w
) )
189184, 188imbi12d 322 . . . . . . . . . . . . . 14  |-  ( d  =  ( G `  z )  ->  (
( ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
d  -  Y ) )  <  b )  ->  ( abs `  (
( ( F `  z )  x.  d
)  -  ( X  x.  Y ) ) )  <  w )  <-> 
( ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b )  ->  ( abs `  (
( ( F `  z )  x.  ( G `  z )
)  -  ( X  x.  Y ) ) )  <  w ) ) )
190180, 189rspc2v 3158 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  CC  /\  ( G `  z )  e.  CC )  -> 
( A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w )  ->  (
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b )  -> 
( abs `  (
( ( F `  z )  x.  ( G `  z )
)  -  ( X  x.  Y ) ) )  <  w ) ) )
191166, 168, 171, 190syl3c 63 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( abs `  (
( ( F `  z )  x.  ( G `  z )
)  -  ( X  x.  Y ) ) )  <  w )
192162, 191eqbrtrd 4422 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) ) )  /\  z  e.  A  /\  (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y ) )  ->  ( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w )
1931923exp 1206 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )  ->  ( z  e.  A  ->  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) ) )
194118, 193ralrimi 2787 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )  /\  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( ( abs `  (
( F `  z
)  -  X ) )  <  a  /\  ( abs `  ( ( G `  z )  -  Y ) )  <  b ) ) )  ->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) )
195194ex 436 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w ) )  /\  y  e.  RR+ )  ->  ( A. z  e.  A  (
( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( ( abs `  ( ( F `  z )  -  X
) )  <  a  /\  ( abs `  (
( G `  z
)  -  Y ) )  <  b ) )  ->  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) ) )
196195reximdva 2861 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  (
a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  -> 
( E. y  e.  RR+  A. z  e.  A  ( ( z  =/= 
D  /\  ( abs `  ( z  -  D
) )  <  y
)  ->  ( ( abs `  ( ( F `
 z )  -  X ) )  < 
a  /\  ( abs `  ( ( G `  z )  -  Y
) )  <  b
) )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  ( abs `  ( ( H `
 z )  -  ( X  x.  Y
) ) )  < 
w ) ) )
197115, 196mpd 15 . . . . . 6  |-  ( ( ( ph  /\  w  e.  RR+ )  /\  (
a  e.  RR+  /\  b  e.  RR+ )  /\  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w ) )  ->  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) )
1981973exp 1206 . . . . 5  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( (
a  e.  RR+  /\  b  e.  RR+ )  ->  ( A. c  e.  CC  A. d  e.  CC  (
( ( abs `  (
c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  <  b )  -> 
( abs `  (
( c  x.  d
)  -  ( X  x.  Y ) ) )  <  w )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  (
z  -  D ) )  <  y )  ->  ( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) ) ) )
199198rexlimdvv 2884 . . . 4  |-  ( (
ph  /\  w  e.  RR+ )  ->  ( E. a  e.  RR+  E. b  e.  RR+  A. c  e.  CC  A. d  e.  CC  ( ( ( abs `  ( c  -  X ) )  <  a  /\  ( abs `  ( d  -  Y ) )  < 
b )  ->  ( abs `  ( ( c  x.  d )  -  ( X  x.  Y
) ) )  < 
w )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  ( abs `  ( ( H `
 z )  -  ( X  x.  Y
) ) )  < 
w ) ) )
20012, 199mpd 15 . . 3  |-  ( (
ph  /\  w  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  D  /\  ( abs `  ( z  -  D ) )  < 
y )  ->  ( abs `  ( ( H `
 z )  -  ( X  x.  Y
) ) )  < 
w ) )
201200ralrimiva 2801 . 2  |-  ( ph  ->  A. w  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) )
202148, 124fmptd 6044 . . 3  |-  ( ph  ->  H : A --> CC )
203202, 20, 21ellimc3 22827 . 2  |-  ( ph  ->  ( ( X  x.  Y )  e.  ( H lim CC  D )  <-> 
( ( X  x.  Y )  e.  CC  /\ 
A. w  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  D  /\  ( abs `  ( z  -  D ) )  <  y )  -> 
( abs `  (
( H `  z
)  -  ( X  x.  Y ) ) )  <  w ) ) ) )
2047, 201, 203mpbir2and 932 1  |-  ( ph  ->  ( X  x.  Y
)  e.  ( H lim
CC  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737    C_ wss 3403   ifcif 3880   class class class wbr 4401    |-> cmpt 4460   dom cdm 4833   -->wf 5577   ` cfv 5581  (class class class)co 6288   CCcc 9534   RRcr 9535    x. cmul 9541    < clt 9672    <_ cle 9673    - cmin 9857   RR+crp 11299   abscabs 13290   lim CC climc 22810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-map 7471  df-pm 7472  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fi 7922  df-sup 7953  df-inf 7954  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-fz 11782  df-seq 12211  df-exp 12270  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-plusg 15196  df-mulr 15197  df-starv 15198  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-rest 15314  df-topn 15315  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cnp 20237  df-xms 21328  df-ms 21329  df-limc 22814
This theorem is referenced by:  reclimc  37728  divlimc  37731  fourierdlem73  38037  fourierdlem76  38040  fourierdlem84  38048  fourierdlem85  38049  fourierdlem88  38052
  Copyright terms: Public domain W3C validator