MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Unicode version

Theorem mulidnq 9390
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 9355 . . 3  |-  1Q  e.  Q.
2 mulpqnq 9368 . . 3  |-  ( ( A  e.  Q.  /\  1Q  e.  Q. )  -> 
( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
31, 2mpan2 676 . 2  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
4 relxp 4959 . . . . . . 7  |-  Rel  ( N.  X.  N. )
5 elpqn 9352 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
6 1st2nd 6851 . . . . . . 7  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
74, 5, 6sylancr 668 . . . . . 6  |-  ( A  e.  Q.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
8 df-1nq 9343 . . . . . . 7  |-  1Q  =  <. 1o ,  1o >.
98a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1Q  =  <. 1o ,  1o >. )
107, 9oveq12d 6321 . . . . 5  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. ) )
11 xp1st 6835 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
125, 11syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  ( 1st `  A )  e. 
N. )
13 xp2nd 6836 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
145, 13syl 17 . . . . . 6  |-  ( A  e.  Q.  ->  ( 2nd `  A )  e. 
N. )
15 1pi 9310 . . . . . . 7  |-  1o  e.  N.
1615a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1o  e.  N. )
17 mulpipq 9367 . . . . . 6  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
1812, 14, 16, 16, 17syl22anc 1266 . . . . 5  |-  ( A  e.  Q.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
19 mulidpi 9313 . . . . . . . 8  |-  ( ( 1st `  A )  e.  N.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
2011, 19syl 17 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  .N  1o )  =  ( 1st `  A
) )
21 mulidpi 9313 . . . . . . . 8  |-  ( ( 2nd `  A )  e.  N.  ->  (
( 2nd `  A
)  .N  1o )  =  ( 2nd `  A
) )
2213, 21syl 17 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 2nd `  A )  .N  1o )  =  ( 2nd `  A
) )
2320, 22opeq12d 4193 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
245, 23syl 17 . . . . 5  |-  ( A  e.  Q.  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
2510, 18, 243eqtrd 2468 . . . 4  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2625, 7eqtr4d 2467 . . 3  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  A )
2726fveq2d 5883 . 2  |-  ( A  e.  Q.  ->  ( /Q `  ( A  .pQ  1Q ) )  =  ( /Q `  A ) )
28 nqerid 9360 . 2  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
293, 27, 283eqtrd 2468 1  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1438    e. wcel 1869   <.cop 4003    X. cxp 4849   Rel wrel 4856   ` cfv 5599  (class class class)co 6303   1stc1st 6803   2ndc2nd 6804   1oc1o 7181   N.cnpi 9271    .N cmi 9273    .pQ cmpq 9276   Q.cnq 9279   1Qc1q 9280   /Qcerq 9281    .Q cmq 9283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-omul 7193  df-er 7369  df-ni 9299  df-mi 9301  df-lti 9302  df-mpq 9336  df-enq 9338  df-nq 9339  df-erq 9340  df-mq 9342  df-1nq 9343
This theorem is referenced by:  recmulnq  9391  ltaddnq  9401  halfnq  9403  ltrnq  9406  addclprlem1  9443  addclprlem2  9444  mulclprlem  9446  1idpr  9456  prlem934  9460  prlem936  9474  reclem3pr  9476
  Copyright terms: Public domain W3C validator