MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdir Structured version   Unicode version

Theorem mulgsubdir 16497
Description: Subtraction of a group element from itself. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b  |-  B  =  ( Base `  G
)
mulgsubdir.t  |-  .x.  =  (.g
`  G )
mulgsubdir.d  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
mulgsubdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 10940 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
2 mulgsubdir.b . . . 4  |-  B  =  ( Base `  G
)
3 mulgsubdir.t . . . 4  |-  .x.  =  (.g
`  G )
4 eqid 2402 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
52, 3, 4mulgdir 16491 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  -u N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
61, 5syl3anr2 1283 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) ) )
7 simpr1 1003 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
87zcnd 11009 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
9 simpr2 1004 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
109zcnd 11009 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
118, 10negsubd 9973 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
1211oveq1d 6293 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  -u N ) 
.x.  X )  =  ( ( M  -  N )  .x.  X
) )
13 eqid 2402 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
142, 3, 13mulgneg 16484 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
15143adant3r1 1206 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
1615oveq2d 6294 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G ) ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
172, 3mulgcl 16483 . . . . 5  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
18173adant3r2 1207 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  X )  e.  B
)
192, 3mulgcl 16483 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
20193adant3r1 1206 . . . 4  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
21 mulgsubdir.d . . . . 5  |-  .-  =  ( -g `  G )
222, 4, 13, 21grpsubval 16417 . . . 4  |-  ( ( ( M  .x.  X
)  e.  B  /\  ( N  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M 
.x.  X ) ( +g  `  G ) ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
2318, 20, 22syl2anc 659 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .-  ( N  .x.  X ) )  =  ( ( M  .x.  X ) ( +g  `  G
) ( ( invg `  G ) `
 ( N  .x.  X ) ) ) )
2416, 23eqtr4d 2446 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  .x.  X ) ( +g  `  G ) ( -u N  .x.  X ) )  =  ( ( M  .x.  X )  .-  ( N  .x.  X ) ) )
256, 12, 243eqtr3d 2451 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  -  N )  .x.  X )  =  ( ( M  .x.  X
)  .-  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   ` cfv 5569  (class class class)co 6278    + caddc 9525    - cmin 9841   -ucneg 9842   ZZcz 10905   Basecbs 14841   +g cplusg 14909   Grpcgrp 16377   invgcminusg 16378   -gcsg 16379  .gcmg 16380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-seq 12152  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382  df-sbg 16383  df-mulg 16384
This theorem is referenced by:  odmod  16894  odcong  16897  gexdvds  16928  archiabllem1a  28187
  Copyright terms: Public domain W3C validator