MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndir Structured version   Unicode version

Theorem mulgnndir 15661
Description: Sum of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnndir.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnndir.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2mndcl 15432 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
433expb 1188 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
54adantlr 714 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
61, 2mndass 15433 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
76adantlr 714 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
8 simpr2 995 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  NN )
9 nnuz 10908 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
108, 9syl6eleq 2533 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  ( ZZ>= `  1 )
)
11 simpr1 994 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  NN )
1211nnzd 10758 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ZZ )
13 eluzadd 10901 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1410, 12, 13syl2anc 661 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  +  M )  e.  (
ZZ>= `  ( 1  +  M ) ) )
1511nncnd 10350 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  CC )
168nncnd 10350 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  CC )
1715, 16addcomd 9583 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  =  ( N  +  M ) )
18 ax-1cn 9352 . . . . . 6  |-  1  e.  CC
19 addcom 9567 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2015, 18, 19sylancl 662 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  1 )  =  ( 1  +  M
) )
2120fveq2d 5707 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( 1  +  M ) ) )
2214, 17, 213eltr4d 2524 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
2311, 9syl6eleq 2533 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ( ZZ>= `  1 )
)
24 simpr3 996 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  X  e.  B )
25 elfznn 11490 . . . . 5  |-  ( x  e.  ( 1 ... ( M  +  N
) )  ->  x  e.  NN )
26 fvconst2g 5943 . . . . 5  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
2724, 25, 26syl2an 477 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
2824adantr 465 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  X  e.  B )
2927, 28eqeltrd 2517 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  e.  B )
305, 7, 22, 23, 29seqsplit 11851 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  ( (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
)  .+  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
31 nnaddcl 10356 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3211, 8, 31syl2anc 661 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  NN )
33 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
34 eqid 2443 . . . 4  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
351, 2, 33, 34mulgnn 15645 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3632, 24, 35syl2anc 661 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
371, 2, 33, 34mulgnn 15645 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3811, 24, 37syl2anc 661 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  .x.  X )  =  (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 M ) )
39 elfznn 11490 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
4024, 39, 26syl2an 477 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
4124adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  X  e.  B )
42 nnaddcl 10356 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4339, 11, 42syl2anr 478 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
x  +  M )  e.  NN )
44 fvconst2g 5943 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4541, 43, 44syl2anc 661 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  (
x  +  M ) )  =  X )
4640, 45eqtr4d 2478 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  ( ( NN  X.  { X } ) `  (
x  +  M ) ) )
4710, 12, 46seqshft2 11844 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N )  =  (  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
481, 2, 33, 34mulgnn 15645 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
498, 24, 48syl2anc 661 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
5020seqeq1d 11824 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  seq ( M  +  1 ) (  .+  ,  ( NN  X.  { X } ) )  =  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) )
5150, 17fveq12d 5709 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  (  seq ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
5247, 49, 513eqtr4d 2485 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
5338, 52oveq12d 6121 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq 1 (  .+  ,  ( NN  X.  { X } ) ) `
 M )  .+  (  seq ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) ) )
5430, 36, 533eqtr4d 2485 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {csn 3889    X. cxp 4850   ` cfv 5430  (class class class)co 6103   CCcc 9292   1c1 9295    + caddc 9297   NNcn 10334   ZZcz 10658   ZZ>=cuz 10873   ...cfz 11449    seqcseq 11818   Basecbs 14186   +g cplusg 14250   Mndcmnd 15421  .gcmg 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-seq 11819  df-mnd 15427  df-mulg 15560
This theorem is referenced by:  mulgnn0dir  15662  mulgnnass  15667  isarchi3  26216
  Copyright terms: Public domain W3C validator