MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnass Structured version   Unicode version

Theorem mulgnnass 15766
Description: Product of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnnass  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgnnass
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6200 . . . . . . . 8  |-  ( n  =  1  ->  (
n  x.  N )  =  ( 1  x.  N ) )
21oveq1d 6208 . . . . . . 7  |-  ( n  =  1  ->  (
( n  x.  N
)  .x.  X )  =  ( ( 1  x.  N )  .x.  X ) )
3 oveq1 6200 . . . . . . 7  |-  ( n  =  1  ->  (
n  .x.  ( N  .x.  X ) )  =  ( 1  .x.  ( N  .x.  X ) ) )
42, 3eqeq12d 2473 . . . . . 6  |-  ( n  =  1  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
1  x.  N ) 
.x.  X )  =  ( 1  .x.  ( N  .x.  X ) ) ) )
54imbi2d 316 . . . . 5  |-  ( n  =  1  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( 1  x.  N
)  .x.  X )  =  ( 1  .x.  ( N  .x.  X
) ) ) ) )
6 oveq1 6200 . . . . . . . 8  |-  ( n  =  m  ->  (
n  x.  N )  =  ( m  x.  N ) )
76oveq1d 6208 . . . . . . 7  |-  ( n  =  m  ->  (
( n  x.  N
)  .x.  X )  =  ( ( m  x.  N )  .x.  X ) )
8 oveq1 6200 . . . . . . 7  |-  ( n  =  m  ->  (
n  .x.  ( N  .x.  X ) )  =  ( m  .x.  ( N  .x.  X ) ) )
97, 8eqeq12d 2473 . . . . . 6  |-  ( n  =  m  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
m  x.  N ) 
.x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) )
109imbi2d 316 . . . . 5  |-  ( n  =  m  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) ) ) ) )
11 oveq1 6200 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  N )  =  ( ( m  +  1 )  x.  N ) )
1211oveq1d 6208 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  x.  N
)  .x.  X )  =  ( ( ( m  +  1 )  x.  N )  .x.  X ) )
13 oveq1 6200 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
n  .x.  ( N  .x.  X ) )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) )
1412, 13eqeq12d 2473 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
1514imbi2d 316 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( ( m  + 
1 )  x.  N
)  .x.  X )  =  ( ( m  +  1 )  .x.  ( N  .x.  X ) ) ) ) )
16 oveq1 6200 . . . . . . . 8  |-  ( n  =  M  ->  (
n  x.  N )  =  ( M  x.  N ) )
1716oveq1d 6208 . . . . . . 7  |-  ( n  =  M  ->  (
( n  x.  N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
18 oveq1 6200 . . . . . . 7  |-  ( n  =  M  ->  (
n  .x.  ( N  .x.  X ) )  =  ( M  .x.  ( N  .x.  X ) ) )
1917, 18eqeq12d 2473 . . . . . 6  |-  ( n  =  M  ->  (
( ( n  x.  N )  .x.  X
)  =  ( n 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
2019imbi2d 316 . . . . 5  |-  ( n  =  M  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( n  x.  N
)  .x.  X )  =  ( n  .x.  ( N  .x.  X ) ) )  <->  ( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) ) )
21 nncn 10434 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid2d 9508 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
23223ad2ant1 1009 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( 1  x.  N
)  =  N )
2423oveq1d 6208 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( 1  x.  N )  .x.  X
)  =  ( N 
.x.  X ) )
25 mulgass.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
26 mulgass.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
2725, 26mulgnncl 15753 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
28273coml 1195 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( N  .x.  X
)  e.  B )
2925, 26mulg1 15745 . . . . . . 7  |-  ( ( N  .x.  X )  e.  B  ->  (
1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X
) )
3028, 29syl 16 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( 1  .x.  ( N  .x.  X ) )  =  ( N  .x.  X ) )
3124, 30eqtr4d 2495 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( 1  x.  N )  .x.  X
)  =  ( 1 
.x.  ( N  .x.  X ) ) )
32 oveq1 6200 . . . . . . . 8  |-  ( ( ( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  x.  N
)  .x.  X )
( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
33 nncn 10434 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  CC )
3433adantr 465 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  m  e.  CC )
35 1cnd 9506 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  1  e.  CC )
36 simpr1 994 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  N  e.  NN )
3736nncnd 10442 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  N  e.  CC )
3834, 35, 37adddird 9515 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 )  x.  N )  =  ( ( m  x.  N )  +  ( 1  x.  N ) ) )
3923adantl 466 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( 1  x.  N )  =  N )
4039oveq2d 6209 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  x.  N )  +  ( 1  x.  N ) )  =  ( ( m  x.  N )  +  N
) )
4138, 40eqtrd 2492 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 )  x.  N )  =  ( ( m  x.  N )  +  N
) )
4241oveq1d 6208 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( ( m  x.  N )  +  N )  .x.  X
) )
43 simpr3 996 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  G  e.  Mnd )
44 nnmulcl 10449 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  N  e.  NN )  ->  ( m  x.  N
)  e.  NN )
45443ad2antr1 1153 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( m  x.  N )  e.  NN )
46 simpr2 995 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  X  e.  B )
47 eqid 2451 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
4825, 26, 47mulgnndir 15760 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( ( m  x.  N )  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( (
( m  x.  N
)  +  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
4943, 45, 36, 46, 48syl13anc 1221 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  x.  N
)  +  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
5042, 49eqtrd 2492 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( ( m  x.  N )  .x.  X ) ( +g  `  G ) ( N 
.x.  X ) ) )
5125, 26, 47mulgnnp1 15746 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  ( N  .x.  X )  e.  B )  -> 
( ( m  + 
1 )  .x.  ( N  .x.  X ) )  =  ( ( m 
.x.  ( N  .x.  X ) ) ( +g  `  G ) ( N  .x.  X
) ) )
5228, 51sylan2 474 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
m  +  1 ) 
.x.  ( N  .x.  X ) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) )
5350, 52eqeq12d 2473 . . . . . . . 8  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( ( m  + 
1 )  x.  N
)  .x.  X )  =  ( ( m  +  1 )  .x.  ( N  .x.  X ) )  <->  ( ( ( m  x.  N ) 
.x.  X ) ( +g  `  G ) ( N  .x.  X
) )  =  ( ( m  .x.  ( N  .x.  X ) ) ( +g  `  G
) ( N  .x.  X ) ) ) )
5432, 53syl5ibr 221 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )
)  ->  ( (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) )  ->  ( (
( m  +  1 )  x.  N ) 
.x.  X )  =  ( ( m  + 
1 )  .x.  ( N  .x.  X ) ) ) )
5554ex 434 . . . . . 6  |-  ( m  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( ( m  x.  N )  .x.  X )  =  ( m  .x.  ( N 
.x.  X ) )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X )  =  ( ( m  +  1 )  .x.  ( N 
.x.  X ) ) ) ) )
5655a2d 26 . . . . 5  |-  ( m  e.  NN  ->  (
( ( N  e.  NN  /\  X  e.  B  /\  G  e. 
Mnd )  ->  (
( m  x.  N
)  .x.  X )  =  ( m  .x.  ( N  .x.  X ) ) )  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( ( m  +  1 )  x.  N )  .x.  X
)  =  ( ( m  +  1 ) 
.x.  ( N  .x.  X ) ) ) ) )
575, 10, 15, 20, 31, 56nnind 10444 . . . 4  |-  ( M  e.  NN  ->  (
( N  e.  NN  /\  X  e.  B  /\  G  e.  Mnd )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
58573expd 1205 . . 3  |-  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( G  e.  Mnd  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) ) ) )
5958com4r 86 . 2  |-  ( G  e.  Mnd  ->  ( M  e.  NN  ->  ( N  e.  NN  ->  ( X  e.  B  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) ) ) )
60593imp2 1203 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5519  (class class class)co 6193   CCcc 9384   1c1 9387    + caddc 9389    x. cmul 9391   NNcn 10426   Basecbs 14285   +g cplusg 14349   Mndcmnd 15520  .gcmg 15525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-seq 11917  df-mnd 15526  df-mulg 15659
This theorem is referenced by:  mulgnn0ass  15767
  Copyright terms: Public domain W3C validator