MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0subcl Structured version   Visualization version   Unicode version

Theorem mulgnn0subcl 16783
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
Assertion
Ref Expression
mulgnn0subcl  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
71, 2, 3, 4, 5, 6mulgnnsubcl 16782 . . . . 5  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
873expa 1209 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
98an32s 814 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
1093adantl2 1166 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
11 oveq1 6302 . . . 4  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
1253ad2ant1 1030 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  S  C_  B
)
13 simp3 1011 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  S )
1412, 13sseldd 3435 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  B )
15 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
161, 15, 2mulg0 16775 . . . . 5  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
1714, 16syl 17 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( 0 
.x.  X )  =  .0.  )
1811, 17sylan9eqr 2509 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  .0.  )
19 mulgnn0subcl.c . . . . 5  |-  ( ph  ->  .0.  e.  S )
20193ad2ant1 1030 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  .0.  e.  S )
2120adantr 467 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  .0.  e.  S )
2218, 21eqeltrd 2531 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  e.  S )
23 simp2 1010 . . 3  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  N  e.  NN0 )
24 elnn0 10878 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2523, 24sylib 200 . 2  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  e.  NN  \/  N  =  0 ) )
2610, 22, 25mpjaodan 796 1  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 370    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    C_ wss 3406   ` cfv 5585  (class class class)co 6295   0cc0 9544   NNcn 10616   NN0cn0 10876   Basecbs 15133   +g cplusg 15202   0gc0g 15350  .gcmg 16684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-seq 12221  df-mulg 16688
This theorem is referenced by:  mulgsubcl  16784  mulgnn0cl  16786  submmulgcl  16804  mplbas2  18706
  Copyright terms: Public domain W3C validator