MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0subcl Structured version   Unicode version

Theorem mulgnn0subcl 16282
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
mulgnn0subcl.z  |-  .0.  =  ( 0g `  G )
mulgnn0subcl.c  |-  ( ph  ->  .0.  e.  S )
Assertion
Ref Expression
mulgnn0subcl  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)    .0. ( x, y)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnnsubcl.t . . . . . 6  |-  .x.  =  (.g
`  G )
3 mulgnnsubcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
4 mulgnnsubcl.g . . . . . 6  |-  ( ph  ->  G  e.  V )
5 mulgnnsubcl.s . . . . . 6  |-  ( ph  ->  S  C_  B )
6 mulgnnsubcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
71, 2, 3, 4, 5, 6mulgnnsubcl 16281 . . . . 5  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
873expa 1196 . . . 4  |-  ( ( ( ph  /\  N  e.  NN )  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
98an32s 804 . . 3  |-  ( ( ( ph  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
1093adantl2 1153 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  e.  NN )  ->  ( N  .x.  X )  e.  S )
11 oveq1 6303 . . . 4  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
1253ad2ant1 1017 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  S  C_  B
)
13 simp3 998 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  S )
1412, 13sseldd 3500 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  X  e.  B )
15 mulgnn0subcl.z . . . . . 6  |-  .0.  =  ( 0g `  G )
161, 15, 2mulg0 16274 . . . . 5  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
1714, 16syl 16 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( 0 
.x.  X )  =  .0.  )
1811, 17sylan9eqr 2520 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  =  .0.  )
19 mulgnn0subcl.c . . . . 5  |-  ( ph  ->  .0.  e.  S )
20193ad2ant1 1017 . . . 4  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  .0.  e.  S )
2120adantr 465 . . 3  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  ->  .0.  e.  S )
2218, 21eqeltrd 2545 . 2  |-  ( ( ( ph  /\  N  e.  NN0  /\  X  e.  S )  /\  N  =  0 )  -> 
( N  .x.  X
)  e.  S )
23 simp2 997 . . 3  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  N  e.  NN0 )
24 elnn0 10818 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2523, 24sylib 196 . 2  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  e.  NN  \/  N  =  0 ) )
2610, 22, 25mpjaodan 786 1  |-  ( (
ph  /\  N  e.  NN0 
/\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    C_ wss 3471   ` cfv 5594  (class class class)co 6296   0cc0 9509   NNcn 10556   NN0cn0 10816   Basecbs 14644   +g cplusg 14712   0gc0g 14857  .gcmg 16183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-seq 12111  df-mulg 16187
This theorem is referenced by:  mulgsubcl  16283  mulgnn0cl  16285  submmulgcl  16303  mplbas2  18261  mplbas2OLD  18262
  Copyright terms: Public domain W3C validator