MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0p1 Structured version   Unicode version

Theorem mulgnn0p1 16022
Description: Group multiple (exponentiation) operation at a successor, extended to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b  |-  B  =  ( Base `  G
)
mulgnn0p1.t  |-  .x.  =  (.g
`  G )
mulgnn0p1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0p1  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) )

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  N  e.  NN )
2 simpl3 1000 . . 3  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  X  e.  B
)
3 mulgnn0p1.b . . . 4  |-  B  =  ( Base `  G
)
4 mulgnn0p1.t . . . 4  |-  .x.  =  (.g
`  G )
5 mulgnn0p1.p . . . 4  |-  .+  =  ( +g  `  G )
63, 4, 5mulgnnp1 16019 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X ) )
71, 2, 6syl2anc 661 . 2  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  e.  NN )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X
)  .+  X )
)
8 eqid 2441 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
93, 5, 8mndlid 15810 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
103, 8, 4mulg0 16016 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
1110adantl 466 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
1211oveq1d 6292 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( ( 0g `  G ) 
.+  X ) )
133, 4mulg1 16018 . . . . . . 7  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
1413adantl 466 . . . . . 6  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  X )
159, 12, 143eqtr4rd 2493 . . . . 5  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( 1  .x.  X
)  =  ( ( 0  .x.  X ) 
.+  X ) )
16153adant2 1014 . . . 4  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
1  .x.  X )  =  ( ( 0 
.x.  X )  .+  X ) )
17 oveq1 6284 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
18 1e0p1 11007 . . . . . . 7  |-  1  =  ( 0  +  1 )
1917, 18syl6eqr 2500 . . . . . 6  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
2019oveq1d 6292 . . . . 5  |-  ( N  =  0  ->  (
( N  +  1 )  .x.  X )  =  ( 1  .x. 
X ) )
21 oveq1 6284 . . . . . 6  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
2221oveq1d 6292 . . . . 5  |-  ( N  =  0  ->  (
( N  .x.  X
)  .+  X )  =  ( ( 0 
.x.  X )  .+  X ) )
2320, 22eqeq12d 2463 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  .x.  X
)  =  ( ( N  .x.  X ) 
.+  X )  <->  ( 1 
.x.  X )  =  ( ( 0  .x. 
X )  .+  X
) ) )
2416, 23syl5ibrcom 222 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  =  0  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) ) )
2524imp 429 . 2  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  /\  N  =  0
)  ->  ( ( N  +  1 ) 
.x.  X )  =  ( ( N  .x.  X )  .+  X
) )
26 simp2 996 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  N  e.  NN0 )
27 elnn0 10798 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2826, 27sylib 196 . 2  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  e.  NN  \/  N  =  0 ) )
297, 25, 28mpjaodan 784 1  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  (
( N  +  1 )  .x.  X )  =  ( ( N 
.x.  X )  .+  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   ` cfv 5574  (class class class)co 6277   0cc0 9490   1c1 9491    + caddc 9493   NNcn 10537   NN0cn0 10796   Basecbs 14504   +g cplusg 14569   0gc0g 14709   Mndcmnd 15788  .gcmg 15925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11086  df-seq 12082  df-0g 14711  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-mulg 15929
This theorem is referenced by:  mulgneg2  16038  mhmmulg  16043  srgmulgass  17050  srgpcomp  17051  srgpcompp  17052  srgbinomlem4  17062  srgbinomlem  17063  lmodvsmmulgdi  17415  assamulgscmlem2  17866  mplcoe3  17996  mplcoe3OLD  17997  cnfldmulg  18318  cnfldexp  18319  tmdmulg  20457  clmmulg  21459  omndmul  27570  lmodvsmdi  32685
  Copyright terms: Public domain W3C validator