MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Unicode version

Theorem mulgnn0di 15403
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b  |-  B  =  ( Base `  G
)
mulgdi.m  |-  .x.  =  (.g
`  G )
mulgdi.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0di  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )

Proof of Theorem mulgnn0di
Dummy variables  x  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 15382 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21ad2antrr 707 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. 
Mnd )
3 mulgdi.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 mulgdi.p . . . . . . 7  |-  .+  =  ( +g  `  G )
53, 4mndcl 14650 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653expb 1154 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
72, 6sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
8 simpll 731 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. CMnd
)
93, 4cmncom 15383 . . . . . 6  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) )
1093expb 1154 . . . . 5  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
118, 10sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
123, 4mndass 14651 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
132, 12sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
14 simpr 448 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  NN )
15 nnuz 10477 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
1614, 15syl6eleq 2494 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  ( ZZ>= `  1 )
)
17 simplr2 1000 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  X  e.  B )
18 elfznn 11036 . . . . . 6  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
19 fvconst2g 5904 . . . . . 6  |-  ( ( X  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { X } ) `  k )  =  X )
2017, 18, 19syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  =  X )
2117adantr 452 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  X  e.  B )
2220, 21eqeltrd 2478 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  e.  B )
23 simplr3 1001 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  Y  e.  B )
24 fvconst2g 5904 . . . . . 6  |-  ( ( Y  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { Y } ) `  k )  =  Y )
2523, 18, 24syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  =  Y )
2623adantr 452 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  Y  e.  B )
2725, 26eqeltrd 2478 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  e.  B )
283, 4mndcl 14650 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
292, 17, 23, 28syl3anc 1184 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( X 
.+  Y )  e.  B )
30 fvconst2g 5904 . . . . . 6  |-  ( ( ( X  .+  Y
)  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { ( X  .+  Y ) } ) `
 k )  =  ( X  .+  Y
) )
3129, 18, 30syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( X  .+  Y ) )
3220, 25oveq12d 6058 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) )  =  ( X  .+  Y ) )
3331, 32eqtr4d 2439 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( ( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) ) )
347, 11, 13, 16, 22, 27, 33seqcaopr 11315 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  (  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) ) `
 M )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
35 mulgdi.m . . . . 5  |-  .x.  =  (.g
`  G )
36 eqid 2404 . . . . 5  |-  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) )  =  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) )
373, 4, 35, 36mulgnn 14851 . . . 4  |-  ( ( M  e.  NN  /\  ( X  .+  Y )  e.  B )  -> 
( M  .x.  ( X  .+  Y ) )  =  (  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) ) `  M
) )
3814, 29, 37syl2anc 643 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { ( X 
.+  Y ) } ) ) `  M
) )
39 eqid 2404 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
403, 4, 35, 39mulgnn 14851 . . . . 5  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
4114, 17, 40syl2anc 643 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  X )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
) )
42 eqid 2404 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { Y }
) )  =  seq  1 (  .+  , 
( NN  X.  { Y } ) )
433, 4, 35, 42mulgnn 14851 . . . . 5  |-  ( ( M  e.  NN  /\  Y  e.  B )  ->  ( M  .x.  Y
)  =  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) )
4414, 23, 43syl2anc 643 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  Y )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { Y }
) ) `  M
) )
4541, 44oveq12d 6058 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  .x.  X ) 
.+  ( M  .x.  Y ) )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
4634, 38, 453eqtr4d 2446 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
471ad2antrr 707 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
48 simplr2 1000 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
49 simplr3 1001 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  Y  e.  B )
5047, 48, 49, 28syl3anc 1184 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( X  .+  Y )  e.  B )
51 eqid 2404 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
523, 51, 35mulg0 14850 . . . . 5  |-  ( ( X  .+  Y )  e.  B  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
5350, 52syl 16 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
54 eqid 2404 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
5554, 51mndidcl 14669 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  ( Base `  G
) )
5654, 4, 51mndlid 14671 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 0g `  G )  e.  ( Base `  G
) )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
5755, 56mpdan 650 . . . . . 6  |-  ( G  e.  Mnd  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
581, 57syl 16 . . . . 5  |-  ( G  e. CMnd  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5958ad2antrr 707 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
6053, 59eqtr4d 2439 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
61 simpr 448 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
6261oveq1d 6055 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( 0  .x.  ( X  .+  Y ) ) )
6361oveq1d 6055 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
643, 51, 35mulg0 14850 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6548, 64syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6663, 65eqtrd 2436 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
6761oveq1d 6055 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0  .x.  Y
) )
683, 51, 35mulg0 14850 . . . . . 6  |-  ( Y  e.  B  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
6949, 68syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
7067, 69eqtrd 2436 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0g `  G
) )
7166, 70oveq12d 6058 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( M  .x.  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
7260, 62, 713eqtr4d 2446 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
73 simpr1 963 . . 3  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  ->  M  e.  NN0 )
74 elnn0 10179 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
7573, 74sylib 189 . 2  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  e.  NN  \/  M  =  0
) )
7646, 72, 75mpjaodan 762 1  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {csn 3774    X. cxp 4835   ` cfv 5413  (class class class)co 6040   0cc0 8946   1c1 8947   NNcn 9956   NN0cn0 10177   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Mndcmnd 14639  .gcmg 14644  CMndccmn 15367
This theorem is referenced by:  mulgdi  15404  mulgmhm  15405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-0g 13682  df-mnd 14645  df-mulg 14770  df-cmn 15369
  Copyright terms: Public domain W3C validator