MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Structured version   Unicode version

Theorem mulgnn0di 16961
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b  |-  B  =  ( Base `  G
)
mulgdi.m  |-  .x.  =  (.g
`  G )
mulgdi.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0di  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )

Proof of Theorem mulgnn0di
Dummy variables  x  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 16940 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21ad2antrr 725 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. 
Mnd )
3 mulgdi.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 mulgdi.p . . . . . . 7  |-  .+  =  ( +g  `  G )
53, 4mndcl 16056 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653expb 1197 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
72, 6sylan 471 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
8 simpll 753 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. CMnd
)
93, 4cmncom 16941 . . . . . 6  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) )
1093expb 1197 . . . . 5  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
118, 10sylan 471 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
123, 4mndass 16057 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
132, 12sylan 471 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
14 simpr 461 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  NN )
15 nnuz 11141 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
1614, 15syl6eleq 2555 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  ( ZZ>= `  1 )
)
17 simplr2 1039 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  X  e.  B )
18 elfznn 11739 . . . . . 6  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
19 fvconst2g 6126 . . . . . 6  |-  ( ( X  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { X } ) `  k )  =  X )
2017, 18, 19syl2an 477 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  =  X )
2117adantr 465 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  X  e.  B )
2220, 21eqeltrd 2545 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  e.  B )
23 simplr3 1040 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  Y  e.  B )
24 fvconst2g 6126 . . . . . 6  |-  ( ( Y  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { Y } ) `  k )  =  Y )
2523, 18, 24syl2an 477 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  =  Y )
2623adantr 465 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  Y  e.  B )
2725, 26eqeltrd 2545 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  e.  B )
283, 4mndcl 16056 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
292, 17, 23, 28syl3anc 1228 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( X 
.+  Y )  e.  B )
30 fvconst2g 6126 . . . . . 6  |-  ( ( ( X  .+  Y
)  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { ( X  .+  Y ) } ) `
 k )  =  ( X  .+  Y
) )
3129, 18, 30syl2an 477 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( X  .+  Y ) )
3220, 25oveq12d 6314 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) )  =  ( X  .+  Y ) )
3331, 32eqtr4d 2501 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( ( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) ) )
347, 11, 13, 16, 22, 27, 33seqcaopr 12147 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  (  seq 1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) ) `
 M )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq 1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
35 mulgdi.m . . . . 5  |-  .x.  =  (.g
`  G )
36 eqid 2457 . . . . 5  |-  seq 1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) )  =  seq 1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) )
373, 4, 35, 36mulgnn 16275 . . . 4  |-  ( ( M  e.  NN  /\  ( X  .+  Y )  e.  B )  -> 
( M  .x.  ( X  .+  Y ) )  =  (  seq 1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) ) `  M
) )
3814, 29, 37syl2anc 661 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  (  seq 1 ( 
.+  ,  ( NN 
X.  { ( X 
.+  Y ) } ) ) `  M
) )
39 eqid 2457 . . . . . 6  |-  seq 1
(  .+  ,  ( NN  X.  { X }
) )  =  seq 1 (  .+  , 
( NN  X.  { X } ) )
403, 4, 35, 39mulgnn 16275 . . . . 5  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq 1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
4114, 17, 40syl2anc 661 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  X )  =  (  seq 1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
) )
42 eqid 2457 . . . . . 6  |-  seq 1
(  .+  ,  ( NN  X.  { Y }
) )  =  seq 1 (  .+  , 
( NN  X.  { Y } ) )
433, 4, 35, 42mulgnn 16275 . . . . 5  |-  ( ( M  e.  NN  /\  Y  e.  B )  ->  ( M  .x.  Y
)  =  (  seq 1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) )
4414, 23, 43syl2anc 661 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  Y )  =  (  seq 1 ( 
.+  ,  ( NN 
X.  { Y }
) ) `  M
) )
4541, 44oveq12d 6314 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  .x.  X ) 
.+  ( M  .x.  Y ) )  =  ( (  seq 1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq 1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
4634, 38, 453eqtr4d 2508 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
471ad2antrr 725 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
48 simplr2 1039 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
49 simplr3 1040 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  Y  e.  B )
5047, 48, 49, 28syl3anc 1228 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( X  .+  Y )  e.  B )
51 eqid 2457 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
523, 51, 35mulg0 16274 . . . . 5  |-  ( ( X  .+  Y )  e.  B  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
5350, 52syl 16 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
54 eqid 2457 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
5554, 51mndidcl 16065 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  ( Base `  G
) )
5654, 4, 51mndlid 16068 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 0g `  G )  e.  ( Base `  G
) )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
5755, 56mpdan 668 . . . . . 6  |-  ( G  e.  Mnd  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
581, 57syl 16 . . . . 5  |-  ( G  e. CMnd  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5958ad2antrr 725 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
6053, 59eqtr4d 2501 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
61 simpr 461 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
6261oveq1d 6311 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( 0  .x.  ( X  .+  Y ) ) )
6361oveq1d 6311 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
643, 51, 35mulg0 16274 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6548, 64syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6663, 65eqtrd 2498 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
6761oveq1d 6311 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0  .x.  Y
) )
683, 51, 35mulg0 16274 . . . . . 6  |-  ( Y  e.  B  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
6949, 68syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
7067, 69eqtrd 2498 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0g `  G
) )
7166, 70oveq12d 6314 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( M  .x.  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
7260, 62, 713eqtr4d 2508 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
73 simpr1 1002 . . 3  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  ->  M  e.  NN0 )
74 elnn0 10818 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
7573, 74sylib 196 . 2  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  e.  NN  \/  M  =  0
) )
7646, 72, 75mpjaodan 786 1  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {csn 4032    X. cxp 5006   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510   NNcn 10556   NN0cn0 10816   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   Basecbs 14644   +g cplusg 14712   0gc0g 14857   Mndcmnd 16046  .gcmg 16183  CMndccmn 16925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-seq 12111  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mulg 16187  df-cmn 16927
This theorem is referenced by:  mulgdi  16962  mulgmhm  16963
  Copyright terms: Public domain W3C validator