MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Unicode version

Theorem mulgmhm 16707
Description: The map from  x to  n x for a fixed positive integer  n is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b  |-  B  =  ( Base `  G
)
mulgmhm.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmhm  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G ) )
Distinct variable groups:    x, B    x, G    x, M    x,  .x.

Proof of Theorem mulgmhm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 16684 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21adantr 465 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  G  e.  Mnd )
32, 2jca 532 . 2  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  ( G  e.  Mnd  /\  G  e.  Mnd ) )
4 mulgmhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
5 mulgmhm.m . . . . . . 7  |-  .x.  =  (.g
`  G )
64, 5mulgnn0cl 16029 . . . . . 6  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  x  e.  B )  ->  ( M  .x.  x )  e.  B )
71, 6syl3an1 1261 . . . . 5  |-  ( ( G  e. CMnd  /\  M  e.  NN0  /\  x  e.  B )  ->  ( M  .x.  x )  e.  B )
873expa 1196 . . . 4  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  x  e.  B )  ->  ( M  .x.  x
)  e.  B )
9 eqid 2467 . . . 4  |-  ( x  e.  B  |->  ( M 
.x.  x ) )  =  ( x  e.  B  |->  ( M  .x.  x ) )
108, 9fmptd 6056 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) ) : B --> B )
11 3anass 977 . . . . . . 7  |-  ( ( M  e.  NN0  /\  y  e.  B  /\  z  e.  B )  <->  ( M  e.  NN0  /\  ( y  e.  B  /\  z  e.  B
) ) )
12 eqid 2467 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
134, 5, 12mulgnn0di 16705 . . . . . . 7  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  y  e.  B  /\  z  e.  B ) )  -> 
( M  .x.  (
y ( +g  `  G
) z ) )  =  ( ( M 
.x.  y ) ( +g  `  G ) ( M  .x.  z
) ) )
1411, 13sylan2br 476 . . . . . 6  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  (
y  e.  B  /\  z  e.  B )
) )  ->  ( M  .x.  ( y ( +g  `  G ) z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
1514anassrs 648 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  ( M  .x.  ( y ( +g  `  G ) z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
164, 12mndcl 15801 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  G ) z )  e.  B )
17163expb 1197 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
y ( +g  `  G
) z )  e.  B )
182, 17sylan 471 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
y ( +g  `  G
) z )  e.  B )
19 oveq2 6303 . . . . . . 7  |-  ( x  =  ( y ( +g  `  G ) z )  ->  ( M  .x.  x )  =  ( M  .x.  (
y ( +g  `  G
) z ) ) )
20 ovex 6320 . . . . . . 7  |-  ( M 
.x.  ( y ( +g  `  G ) z ) )  e. 
_V
2119, 9, 20fvmpt 5957 . . . . . 6  |-  ( ( y ( +g  `  G
) z )  e.  B  ->  ( (
x  e.  B  |->  ( M  .x.  x ) ) `  ( y ( +g  `  G
) z ) )  =  ( M  .x.  ( y ( +g  `  G ) z ) ) )
2218, 21syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  (
y ( +g  `  G
) z ) )  =  ( M  .x.  ( y ( +g  `  G ) z ) ) )
23 oveq2 6303 . . . . . . . 8  |-  ( x  =  y  ->  ( M  .x.  x )  =  ( M  .x.  y
) )
24 ovex 6320 . . . . . . . 8  |-  ( M 
.x.  y )  e. 
_V
2523, 9, 24fvmpt 5957 . . . . . . 7  |-  ( y  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  y
)  =  ( M 
.x.  y ) )
26 oveq2 6303 . . . . . . . 8  |-  ( x  =  z  ->  ( M  .x.  x )  =  ( M  .x.  z
) )
27 ovex 6320 . . . . . . . 8  |-  ( M 
.x.  z )  e. 
_V
2826, 9, 27fvmpt 5957 . . . . . . 7  |-  ( z  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  z
)  =  ( M 
.x.  z ) )
2925, 28oveqan12d 6314 . . . . . 6  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
3029adantl 466 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  =  ( ( M  .x.  y ) ( +g  `  G
) ( M  .x.  z ) ) )
3115, 22, 303eqtr4d 2518 . . . 4  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  (
y ( +g  `  G
) z ) )  =  ( ( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G
) ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 z ) ) )
3231ralrimivva 2888 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  A. y  e.  B  A. z  e.  B  ( (
x  e.  B  |->  ( M  .x.  x ) ) `  ( y ( +g  `  G
) z ) )  =  ( ( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G
) ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 z ) ) )
33 eqid 2467 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
344, 33mndidcl 15810 . . . . 5  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
35 oveq2 6303 . . . . . 6  |-  ( x  =  ( 0g `  G )  ->  ( M  .x.  x )  =  ( M  .x.  ( 0g `  G ) ) )
36 ovex 6320 . . . . . 6  |-  ( M 
.x.  ( 0g `  G ) )  e. 
_V
3735, 9, 36fvmpt 5957 . . . . 5  |-  ( ( 0g `  G )  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( M  .x.  ( 0g `  G ) ) )
382, 34, 373syl 20 . . . 4  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( M  .x.  ( 0g `  G ) ) )
394, 5, 33mulgnn0z 16033 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  NN0 )  -> 
( M  .x.  ( 0g `  G ) )  =  ( 0g `  G ) )
401, 39sylan 471 . . . 4  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  ( M  .x.  ( 0g `  G ) )  =  ( 0g `  G
) )
4138, 40eqtrd 2508 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( 0g `  G ) )
4210, 32, 413jca 1176 . 2  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) : B --> B  /\  A. y  e.  B  A. z  e.  B  ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 ( y ( +g  `  G ) z ) )  =  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  /\  ( ( x  e.  B  |->  ( M  .x.  x ) ) `  ( 0g `  G ) )  =  ( 0g
`  G ) ) )
434, 4, 12, 12, 33, 33ismhm 15840 . 2  |-  ( ( x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G )  <->  ( ( G  e.  Mnd  /\  G  e.  Mnd )  /\  (
( x  e.  B  |->  ( M  .x.  x
) ) : B --> B  /\  A. y  e.  B  A. z  e.  B  ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 ( y ( +g  `  G ) z ) )  =  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  /\  ( ( x  e.  B  |->  ( M  .x.  x ) ) `  ( 0g `  G ) )  =  ( 0g
`  G ) ) ) )
443, 42, 43sylanbrc 664 1  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295   NN0cn0 10807   Basecbs 14506   +g cplusg 14571   0gc0g 14711   Mndcmnd 15792   MndHom cmhm 15836  .gcmg 15927  CMndccmn 16669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-seq 12088  df-0g 14713  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-mhm 15838  df-mulg 15931  df-cmn 16671
This theorem is referenced by:  gsummulglem  16835
  Copyright terms: Public domain W3C validator