MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm2 Structured version   Unicode version

Theorem mulgghm2 18298
Description: The powers of a group element give a homomorphism from 
ZZ to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zringgrp 18261 . . 3  |-ring  e.  Grp
31, 2jctil 537 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(ring 
e.  Grp  /\  R  e. 
Grp ) )
4 mulgghm2.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
64, 5mulgcl 15959 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
763expa 1196 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
87an32s 802 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
108, 9fmptd 6043 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
11 eqid 2467 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
124, 5, 11mulgdir 15967 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
13123exp2 1214 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1413imp42 594 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1514an32s 802 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
16 zaddcl 10899 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
1716adantl 466 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
18 oveq1 6289 . . . . . . 7  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
19 ovex 6307 . . . . . . 7  |-  ( ( x  +  y ) 
.x.  .1.  )  e.  _V
2018, 9, 19fvmpt 5948 . . . . . 6  |-  ( ( x  +  y )  e.  ZZ  ->  ( F `  ( x  +  y ) )  =  ( ( x  +  y )  .x.  .1.  ) )
2117, 20syl 16 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
22 oveq1 6289 . . . . . . . 8  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
23 ovex 6307 . . . . . . . 8  |-  ( x 
.x.  .1.  )  e.  _V
2422, 9, 23fvmpt 5948 . . . . . . 7  |-  ( x  e.  ZZ  ->  ( F `  x )  =  ( x  .x.  .1.  ) )
25 oveq1 6289 . . . . . . . 8  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
26 ovex 6307 . . . . . . . 8  |-  ( y 
.x.  .1.  )  e.  _V
2725, 9, 26fvmpt 5948 . . . . . . 7  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  .1.  ) )
2824, 27oveqan12d 6301 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
2928adantl 466 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3015, 21, 293eqtr4d 2518 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3130ralrimivva 2885 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3210, 31jca 532 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
33 zringbas 18262 . . 3  |-  ZZ  =  ( Base ` ring )
34 zringplusg 18263 . . 3  |-  +  =  ( +g  ` ring )
3533, 4, 34, 11isghm 16062 . 2  |-  ( F  e.  (ring  GrpHom  R )  <->  ( (ring  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ
--> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) ) )
363, 32, 35sylanbrc 664 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    |-> cmpt 4505   -->wf 5582   ` cfv 5586  (class class class)co 6282    + caddc 9491   ZZcz 10860   Basecbs 14486   +g cplusg 14551   Grpcgrp 15723  .gcmg 15727    GrpHom cghm 16059  ℤringzring 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-seq 12072  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-0g 14693  df-mnd 15728  df-grp 15858  df-minusg 15859  df-mulg 15861  df-subg 15993  df-ghm 16060  df-cmn 16596  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-subrg 17210  df-cnfld 18192  df-zring 18257
This theorem is referenced by:  mulgrhm  18299  frgpcyg  18379
  Copyright terms: Public domain W3C validator