MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm2 Structured version   Unicode version

Theorem mulgghm2 17767
Description: The powers of a group element give a homomorphism from 
ZZ to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 454 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zringgrp 17730 . . 3  |-ring  e.  Grp
31, 2jctil 534 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(ring 
e.  Grp  /\  R  e. 
Grp ) )
4 mulgghm2.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
64, 5mulgcl 15624 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
763expa 1180 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
87an32s 795 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
108, 9fmptd 5855 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
11 eqid 2433 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
124, 5, 11mulgdir 15632 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
13123exp2 1198 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1413imp42 589 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1514an32s 795 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
16 zaddcl 10673 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
1716adantl 463 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
18 oveq1 6087 . . . . . . 7  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
19 ovex 6105 . . . . . . 7  |-  ( ( x  +  y ) 
.x.  .1.  )  e.  _V
2018, 9, 19fvmpt 5762 . . . . . 6  |-  ( ( x  +  y )  e.  ZZ  ->  ( F `  ( x  +  y ) )  =  ( ( x  +  y )  .x.  .1.  ) )
2117, 20syl 16 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
22 oveq1 6087 . . . . . . . 8  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
23 ovex 6105 . . . . . . . 8  |-  ( x 
.x.  .1.  )  e.  _V
2422, 9, 23fvmpt 5762 . . . . . . 7  |-  ( x  e.  ZZ  ->  ( F `  x )  =  ( x  .x.  .1.  ) )
25 oveq1 6087 . . . . . . . 8  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
26 ovex 6105 . . . . . . . 8  |-  ( y 
.x.  .1.  )  e.  _V
2725, 9, 26fvmpt 5762 . . . . . . 7  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  .1.  ) )
2824, 27oveqan12d 6099 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
2928adantl 463 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3015, 21, 293eqtr4d 2475 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3130ralrimivva 2798 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3210, 31jca 529 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
33 zringbas 17731 . . 3  |-  ZZ  =  ( Base ` ring )
34 zringplusg 17732 . . 3  |-  +  =  ( +g  ` ring )
3533, 4, 34, 11isghm 15727 . 2  |-  ( F  e.  (ring  GrpHom  R )  <->  ( (ring  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ
--> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) ) )
363, 32, 35sylanbrc 657 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080    + caddc 9273   ZZcz 10634   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393  .gcmg 15397    GrpHom cghm 15724  ℤringzring 17725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-seq 11791  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-mulg 15528  df-subg 15658  df-ghm 15725  df-cmn 16259  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-subrg 16787  df-cnfld 17663  df-zring 17726
This theorem is referenced by:  mulgrhm  17768  frgpcyg  17848
  Copyright terms: Public domain W3C validator