MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Unicode version

Theorem mulgdir 16146
Description: Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4  |-  B  =  ( Base `  G
)
2 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
3 mulgnndir.p . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3mulgdirlem 16145 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
543expa 1197 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  +  N )  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
6 simpll 753 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  G  e.  Grp )
7 simpr2 1004 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
87adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  ZZ )
98znegcld 10978 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  ZZ )
10 simpr1 1003 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
1110adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  ZZ )
1211znegcld 10978 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  ZZ )
13 simplr3 1041 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  X  e.  B )
1411zcnd 10977 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  CC )
158zcnd 10977 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  CC )
1614, 15negdid 9949 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u M  +  -u N ) )
1714negcld 9923 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  CC )
1815negcld 9923 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  CC )
1917, 18addcomd 9785 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  +  -u N
)  =  ( -u N  +  -u M ) )
2016, 19eqtrd 2484 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u N  +  -u M ) )
21 simpr 461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  e.  NN0 )
2220, 21eqeltrrd 2532 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  +  -u M
)  e.  NN0 )
231, 2, 3mulgdirlem 16145 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u N  e.  ZZ  /\  -u M  e.  ZZ  /\  X  e.  B )  /\  ( -u N  +  -u M )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
246, 9, 12, 13, 22, 23syl131anc 1242 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
2520oveq1d 6296 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( -u N  +  -u M ) 
.x.  X ) )
2610, 7zaddcld 10980 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  N )  e.  ZZ )
2726adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  +  N )  e.  ZZ )
28 eqid 2443 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
291, 2, 28mulgneg 16139 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  +  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )
306, 27, 13, 29syl3anc 1229 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )
3125, 30eqtr3d 2486 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( ( invg `  G
) `  ( ( M  +  N )  .x.  X ) ) )
321, 2, 28mulgneg 16139 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
336, 8, 13, 32syl3anc 1229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
341, 2, 28mulgneg 16139 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
356, 11, 13, 34syl3anc 1229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
3633, 35oveq12d 6299 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
371, 2mulgcl 16138 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
386, 11, 13, 37syl3anc 1229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  .x.  X )  e.  B )
391, 2mulgcl 16138 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
406, 8, 13, 39syl3anc 1229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( N  .x.  X )  e.  B )
411, 3, 28grpinvadd 16095 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
426, 38, 40, 41syl3anc 1229 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
4336, 42eqtr4d 2487 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )
4424, 31, 433eqtr3d 2492 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) ) )
4544fveq2d 5860 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) ) )
461, 2mulgcl 16138 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
476, 27, 13, 46syl3anc 1229 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  e.  B )
481, 28grpinvinv 16084 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
496, 47, 48syl2anc 661 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  +  N
)  .x.  X )
)
501, 3grpcl 16042 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
516, 38, 40, 50syl3anc 1229 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
521, 28grpinvinv 16084 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
536, 51, 52syl2anc 661 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
5445, 49, 533eqtr3d 2492 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
55 elznn0 10886 . . . 4  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
5655simprbi 464 . . 3  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
5726, 56syl 16 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) )
585, 54, 57mpjaodan 786 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   ` cfv 5578  (class class class)co 6281   RRcr 9494    + caddc 9498   -ucneg 9811   NN0cn0 10802   ZZcz 10871   Basecbs 14614   +g cplusg 14679   Grpcgrp 16032   invgcminusg 16033  .gcmg 16035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-seq 12090  df-0g 14821  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-minusg 16037  df-mulg 16039
This theorem is referenced by:  mulgp1  16147  mulgneg2  16148  mulgsubdir  16152  cycsubgcl  16206  odbezout  16559  cygabl  16872  ablfacrp  17096  pgpfac1lem2  17105  pgpfac1lem3  17107  mulgghm2  18509  mulgghm2OLD  18512  zlmlmod  18538  cygznlem3  18586  dchrptlem2  23518  archirngz  27711  archiabllem1a  27713  archiabllem1  27715  archiabllem2c  27717
  Copyright terms: Public domain W3C validator