MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Unicode version

Theorem mulgdir 15667
Description: Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4  |-  B  =  ( Base `  G
)
2 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
3 mulgnndir.p . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3mulgdirlem 15666 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
543expa 1187 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  +  N )  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
6 simpll 753 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  G  e.  Grp )
7 simpr2 995 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
87adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  ZZ )
98znegcld 10764 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  ZZ )
10 simpr1 994 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
1110adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  ZZ )
1211znegcld 10764 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  ZZ )
13 simplr3 1032 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  X  e.  B )
1411zcnd 10763 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  CC )
158zcnd 10763 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  CC )
1614, 15negdid 9747 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u M  +  -u N ) )
1714negcld 9721 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  CC )
1815negcld 9721 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  CC )
1917, 18addcomd 9586 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  +  -u N
)  =  ( -u N  +  -u M ) )
2016, 19eqtrd 2475 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u N  +  -u M ) )
21 simpr 461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  e.  NN0 )
2220, 21eqeltrrd 2518 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  +  -u M
)  e.  NN0 )
231, 2, 3mulgdirlem 15666 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u N  e.  ZZ  /\  -u M  e.  ZZ  /\  X  e.  B )  /\  ( -u N  +  -u M )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
246, 9, 12, 13, 22, 23syl131anc 1231 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
2520oveq1d 6121 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( -u N  +  -u M ) 
.x.  X ) )
2610, 7zaddcld 10766 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  N )  e.  ZZ )
2726adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  +  N )  e.  ZZ )
28 eqid 2443 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
291, 2, 28mulgneg 15660 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  +  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )
306, 27, 13, 29syl3anc 1218 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )
3125, 30eqtr3d 2477 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( ( invg `  G
) `  ( ( M  +  N )  .x.  X ) ) )
321, 2, 28mulgneg 15660 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
336, 8, 13, 32syl3anc 1218 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
341, 2, 28mulgneg 15660 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
356, 11, 13, 34syl3anc 1218 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
3633, 35oveq12d 6124 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
371, 2mulgcl 15659 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
386, 11, 13, 37syl3anc 1218 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  .x.  X )  e.  B )
391, 2mulgcl 15659 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
406, 8, 13, 39syl3anc 1218 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( N  .x.  X )  e.  B )
411, 3, 28grpinvadd 15619 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
426, 38, 40, 41syl3anc 1218 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
4336, 42eqtr4d 2478 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )
4424, 31, 433eqtr3d 2483 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) ) )
4544fveq2d 5710 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) ) )
461, 2mulgcl 15659 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
476, 27, 13, 46syl3anc 1218 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  e.  B )
481, 28grpinvinv 15608 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
496, 47, 48syl2anc 661 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  +  N
)  .x.  X )
)
501, 3grpcl 15566 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
516, 38, 40, 50syl3anc 1218 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
521, 28grpinvinv 15608 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
536, 51, 52syl2anc 661 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
5445, 49, 533eqtr3d 2483 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
55 elznn0 10676 . . . 4  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
5655simprbi 464 . . 3  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
5726, 56syl 16 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) )
585, 54, 57mpjaodan 784 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5433  (class class class)co 6106   RRcr 9296    + caddc 9300   -ucneg 9611   NN0cn0 10594   ZZcz 10661   Basecbs 14189   +g cplusg 14253   Grpcgrp 15425   invgcminusg 15426  .gcmg 15429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-n0 10595  df-z 10662  df-uz 10877  df-fz 11453  df-seq 11822  df-0g 14395  df-mnd 15430  df-grp 15560  df-minusg 15561  df-mulg 15563
This theorem is referenced by:  mulgp1  15668  mulgneg2  15669  mulgsubdir  15673  cycsubgcl  15722  odbezout  16074  cygabl  16382  ablfacrp  16582  pgpfac1lem2  16591  pgpfac1lem3  16593  mulgghm2  17940  mulgghm2OLD  17943  zlmlmod  17969  cygznlem3  18017  dchrptlem2  22619  archirngz  26221  archiabllem1a  26223  archiabllem1  26225  archiabllem2c  26227
  Copyright terms: Public domain W3C validator