MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgcddvds Structured version   Unicode version

Theorem mulgcddvds 14621
Description: One half of rpmulgcd2 14622, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
mulgcddvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )

Proof of Theorem mulgcddvds
StepHypRef Expression
1 simp1 1005 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
2 simp2 1006 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
3 simp3 1007 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
42, 3zmulcld 11035 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
51, 4gcdcld 14445 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e. 
NN0 )
65nn0zd 11027 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  e.  ZZ )
7 dvds0 14285 . . . . 5  |-  ( ( K  gcd  ( M  x.  N ) )  e.  ZZ  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
86, 7syl 17 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  0 )
98adantr 466 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  0
)
10 oveq2 6304 . . . 4  |-  ( ( K  gcd  N )  =  0  ->  (
( K  gcd  M
)  x.  ( K  gcd  N ) )  =  ( ( K  gcd  M )  x.  0 ) )
111, 2gcdcld 14445 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e. 
NN0 )
1211nn0cnd 10916 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  CC )
1312mul01d 9821 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  M
)  x.  0 )  =  0 )
1410, 13sylan9eqr 2483 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( ( K  gcd  M )  x.  ( K  gcd  N
) )  =  0 )
159, 14breqtrrd 4443 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
166adantr 466 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  ZZ )
1716zcnd 11030 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  e.  CC )
181, 3gcdcld 14445 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e. 
NN0 )
1918nn0zd 11027 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  ZZ )
2019adantr 466 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  ZZ )
2120zcnd 11030 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  e.  CC )
22 simpr 462 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  =/=  0 )
2317, 21, 22divcan1d 10373 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  =  ( K  gcd  ( M  x.  N
) ) )
24 gcddvds 14440 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( ( K  gcd  ( M  x.  N ) )  ||  K  /\  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )
) )
251, 4, 24syl2anc 665 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  /\  ( K  gcd  ( M  x.  N ) ) 
||  ( M  x.  N ) ) )
2625simpld 460 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  K )
27 dvdsmultr1 14305 . . . . . . . . . 10  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  K  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) ) )
286, 1, 19, 27syl3anc 1264 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) ) )
2926, 28mpd 15 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( K  x.  ( K  gcd  N ) ) )
3029adantr 466 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( K  x.  ( K  gcd  N ) ) )
3123, 30eqbrtrd 4437 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) ) )
32 gcddvds 14440 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  N ) )
331, 3, 32syl2anc 665 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  K  /\  ( K  gcd  N ) 
||  N ) )
3433simpld 460 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  K )
3533simprd 464 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  N )
36 dvdsmultr2 14307 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3719, 2, 3, 36syl3anc 1264 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  N
)  ||  N  ->  ( K  gcd  N ) 
||  ( M  x.  N ) ) )
3835, 37mpd 15 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( M  x.  N
) )
39 dvdsgcd 14471 . . . . . . . . . . 11  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  K  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4019, 1, 4, 39syl3anc 1264 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  N )  ||  K  /\  ( K  gcd  N ) 
||  ( M  x.  N ) )  -> 
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) ) ) )
4134, 38, 40mp2and 683 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
4241adantr 466 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) ) )
43 dvdsval2 14275 . . . . . . . . 9  |-  ( ( ( K  gcd  N
)  e.  ZZ  /\  ( K  gcd  N )  =/=  0  /\  ( K  gcd  ( M  x.  N ) )  e.  ZZ )  ->  (
( K  gcd  N
)  ||  ( K  gcd  ( M  x.  N
) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ ) )
4420, 22, 16, 43syl3anc 1264 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  N )  ||  ( K  gcd  ( M  x.  N ) )  <-> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ ) )
4542, 44mpbid 213 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  e.  ZZ )
461adantr 466 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  K  e.  ZZ )
47 dvdsmulcr 14299 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
4845, 46, 20, 22, 47syl112anc 1268 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( K  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
) )
4931, 48mpbid 213 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K
)
50 nn0abscl 13343 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
512, 50syl 17 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
5251nn0zd 11027 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e.  ZZ )
53 dvdsmultr2 14307 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
546, 52, 1, 53syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  K  ->  ( K  gcd  ( M  x.  N ) ) 
||  ( ( abs `  M )  x.  K
) ) )
5526, 54mpd 15 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K ) )
5625simprd 464 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
) )
57 iddvds 14283 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  ||  M )
582, 57syl 17 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
59 dvdsabsb 14289 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  ||  M  <->  M 
||  ( abs `  M
) ) )
602, 2, 59syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  M  <->  M  ||  ( abs `  M ) ) )
6158, 60mpbid 213 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  M
) )
62 dvdsmulc 14297 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  ( abs `  M )  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
632, 52, 3, 62syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  M
)  ->  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) ) )
6461, 63mpd 15 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  ||  ( ( abs `  M
)  x.  N ) )
6552, 3zmulcld 11035 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  N )  e.  ZZ )
66 dvdstr 14304 . . . . . . . . . . . . 13  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ  /\  ( ( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  N
)  /\  ( M  x.  N )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) ) )
676, 4, 65, 66syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  N )  /\  ( M  x.  N
)  ||  ( ( abs `  M )  x.  N ) )  -> 
( K  gcd  ( M  x.  N )
)  ||  ( ( abs `  M )  x.  N ) ) )
6856, 64, 67mp2and 683 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  N ) )
6952, 1zmulcld 11035 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  K )  e.  ZZ )
70 dvdsgcd 14471 . . . . . . . . . . . 12  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( ( abs `  M
)  x.  K )  e.  ZZ  /\  (
( abs `  M
)  x.  N )  e.  ZZ )  -> 
( ( ( K  gcd  ( M  x.  N ) )  ||  ( ( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
716, 69, 65, 70syl3anc 1264 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  K )  /\  ( K  gcd  ( M  x.  N
) )  ||  (
( abs `  M
)  x.  N ) )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) ) )
7255, 68, 71mp2and 683 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( ( abs `  M )  x.  K
)  gcd  ( ( abs `  M )  x.  N ) ) )
7318nn0red 10915 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  RR )
7418nn0ge0d 10917 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  <_  ( K  gcd  N
) )
7573, 74absidd 13452 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  gcd  N ) )  =  ( K  gcd  N ) )
7675oveq2d 6312 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
772zcnd 11030 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
7818nn0cnd 10916 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  N )  e.  CC )
7977, 78absmuld 13483 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( abs `  M
)  x.  ( abs `  ( K  gcd  N
) ) ) )
80 mulgcd 14474 . . . . . . . . . . . 12  |-  ( ( ( abs `  M
)  e.  NN0  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8151, 1, 3, 80syl3anc 1264 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) )  =  ( ( abs `  M
)  x.  ( K  gcd  N ) ) )
8276, 79, 813eqtr4d 2471 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  ( K  gcd  N ) ) )  =  ( ( ( abs `  M
)  x.  K )  gcd  ( ( abs `  M )  x.  N
) ) )
8372, 82breqtrrd 4443 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) )
842, 19zmulcld 11035 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  ( K  gcd  N ) )  e.  ZZ )
85 dvdsabsb 14289 . . . . . . . . . 10  |-  ( ( ( K  gcd  ( M  x.  N )
)  e.  ZZ  /\  ( M  x.  ( K  gcd  N ) )  e.  ZZ )  -> 
( ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
866, 84, 85syl2anc 665 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  gcd  ( M  x.  N )
)  ||  ( M  x.  ( K  gcd  N
) )  <->  ( K  gcd  ( M  x.  N
) )  ||  ( abs `  ( M  x.  ( K  gcd  N ) ) ) ) )
8783, 86mpbird 235 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( M  x.  ( K  gcd  N ) ) )
8887adantr 466 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  ( M  x.  ( K  gcd  N ) ) )
8923, 88eqbrtrd 4437 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) ) )
902adantr 466 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  M  e.  ZZ )
91 dvdsmulcr 14299 . . . . . . 7  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  ( ( K  gcd  N )  e.  ZZ  /\  ( K  gcd  N )  =/=  0 ) )  -> 
( ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9245, 90, 20, 22, 91syl112anc 1268 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  ( M  x.  ( K  gcd  N ) )  <->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
) )
9389, 92mpbid 213 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  M
)
94 dvdsgcd 14471 . . . . . 6  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  K  /\  ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9545, 46, 90, 94syl3anc 1264 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( ( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  K  /\  (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) ) 
||  M )  -> 
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M ) ) )
9649, 93, 95mp2and 683 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  ||  ( K  gcd  M ) )
9711nn0zd 11027 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  M )  e.  ZZ )
9897adantr 466 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  M )  e.  ZZ )
99 dvdsmulc 14297 . . . . 5  |-  ( ( ( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) )  e.  ZZ  /\  ( K  gcd  M )  e.  ZZ  /\  ( K  gcd  N )  e.  ZZ )  ->  (
( ( K  gcd  ( M  x.  N
) )  /  ( K  gcd  N ) ) 
||  ( K  gcd  M )  ->  ( (
( K  gcd  ( M  x.  N )
)  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) ) )
10045, 98, 20, 99syl3anc 1264 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  ||  ( K  gcd  M )  -> 
( ( ( K  gcd  ( M  x.  N ) )  / 
( K  gcd  N
) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) ) )
10196, 100mpd 15 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( ( ( K  gcd  ( M  x.  N ) )  /  ( K  gcd  N ) )  x.  ( K  gcd  N ) ) 
||  ( ( K  gcd  M )  x.  ( K  gcd  N
) ) )
10223, 101eqbrtrrd 4439 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  gcd  N
)  =/=  0 )  ->  ( K  gcd  ( M  x.  N
) )  ||  (
( K  gcd  M
)  x.  ( K  gcd  N ) ) )
10315, 102pm2.61dane 2740 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  gcd  ( M  x.  N ) )  ||  ( ( K  gcd  M )  x.  ( K  gcd  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   0cc0 9528    x. cmul 9533    / cdiv 10258   NN0cn0 10858   ZZcz 10926   abscabs 13265    || cdvds 14272    gcd cgcd 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-er 7362  df-en 7569  df-dom 7570  df-sdom 7571  df-sup 7953  df-inf 7954  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-fl 12014  df-mod 12083  df-seq 12200  df-exp 12259  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-dvds 14273  df-gcd 14432
This theorem is referenced by:  rpmulgcd2  14622  rpmul  14635
  Copyright terms: Public domain W3C validator