MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass3 Unicode version

Theorem mulgass3 15697
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass3.b  |-  B  =  ( Base `  R
)
mulgass3.m  |-  .x.  =  (.g
`  R )
mulgass3.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . 6  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 15691 . . . . 5  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
32adantr 452 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
(oppr `  R )  e.  Ring )
4 simpr1 963 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  N  e.  ZZ )
5 simpr3 965 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
6 simpr2 964 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
7 mulgass3.b . . . . . 6  |-  B  =  ( Base `  R
)
81, 7opprbas 15689 . . . . 5  |-  B  =  ( Base `  (oppr `  R
) )
9 eqid 2404 . . . . 5  |-  (.g `  (oppr `  R
) )  =  (.g `  (oppr
`  R ) )
10 eqid 2404 . . . . 5  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
118, 9, 10mulgass2 15665 . . . 4  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N  e.  ZZ  /\  Y  e.  B  /\  X  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
123, 4, 5, 6, 11syl13anc 1186 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) ) )
13 mulgass3.t . . . 4  |-  .X.  =  ( .r `  R )
147, 13, 1, 10opprmul 15686 . . 3  |-  ( ( N (.g `  (oppr
`  R ) ) Y ) ( .r
`  (oppr
`  R ) ) X )  =  ( X  .X.  ( N
(.g `  (oppr
`  R ) ) Y ) )
157, 13, 1, 10opprmul 15686 . . . 4  |-  ( Y ( .r `  (oppr `  R
) ) X )  =  ( X  .X.  Y )
1615oveq2i 6051 . . 3  |-  ( N (.g `  (oppr
`  R ) ) ( Y ( .r
`  (oppr
`  R ) ) X ) )  =  ( N (.g `  (oppr `  R
) ) ( X 
.X.  Y ) )
1712, 14, 163eqtr3g 2459 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) )  =  ( N (.g `  (oppr `  R
) ) ( X 
.X.  Y ) ) )
18 mulgass3.m . . . . 5  |-  .x.  =  (.g
`  R )
197a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  R ) )
208a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( Base `  (oppr
`  R ) ) )
21 ssv 3328 . . . . . 6  |-  B  C_  _V
2221a1i 11 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  B  C_  _V )
23 ovex 6065 . . . . . 6  |-  ( x ( +g  `  R
) y )  e. 
_V
2423a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x ( +g  `  R ) y )  e.  _V )
25 eqid 2404 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
261, 25oppradd 15690 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  (oppr `  R
) )
2726oveqi 6053 . . . . . 6  |-  ( x ( +g  `  R
) y )  =  ( x ( +g  `  (oppr
`  R ) ) y )
2827a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B )
)  /\  ( x  e.  _V  /\  y  e. 
_V ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  R
) ) y ) )
2918, 9, 19, 20, 22, 24, 28mulgpropd 14878 . . . 4  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  ->  .x.  =  (.g `  (oppr
`  R ) ) )
3029oveqd 6057 . . 3  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  Y
)  =  ( N (.g `  (oppr
`  R ) ) Y ) )
3130oveq2d 6056 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( X  .X.  ( N (.g `  (oppr
`  R ) ) Y ) ) )
3229oveqd 6057 . 2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( N  .x.  ( X  .X.  Y ) )  =  ( N (.g `  (oppr
`  R ) ) ( X  .X.  Y
) ) )
3317, 31, 323eqtr4d 2446 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( X  .X.  ( N  .x.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280   ` cfv 5413  (class class class)co 6040   ZZcz 10238   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  .gcmg 14644   Ringcrg 15615  opprcoppr 15682
This theorem is referenced by:  zlmassa  16760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-seq 11279  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-mulr 13498  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-mulg 14770  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683
  Copyright terms: Public domain W3C validator