MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Structured version   Unicode version

Theorem mulgass 16044
Description: Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgass  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1002 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
2 elznn0 10891 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
32simprbi 464 . . 3  |-  ( M  e.  ZZ  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
41, 3syl 16 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
5 simpr2 1003 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
6 elznn0 10891 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
76simprbi 464 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
85, 7syl 16 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
9 grpmnd 15934 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
109ad2antrr 725 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
11 simprl 755 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  M  e.  NN0 )
12 simprr 756 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
13 simplr3 1040 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
14 mulgass.b . . . . . 6  |-  B  =  ( Base `  G
)
15 mulgass.t . . . . . 6  |-  .x.  =  (.g
`  G )
1614, 15mulgnn0ass 16043 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
1710, 11, 12, 13, 16syl13anc 1230 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
1817ex 434 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
191zcnd 10979 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
205zcnd 10979 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
2119, 20mulneg1d 10021 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
2221adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u M  x.  N
)  =  -u ( M  x.  N )
)
2322oveq1d 6310 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
249ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
25 simprl 755 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  -u M  e.  NN0 )
26 simprr 756 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
27 simpr3 1004 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  X  e.  B )
2827adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
2914, 15mulgnn0ass 16043 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( -u M  x.  N ) 
.x.  X )  =  ( -u M  .x.  ( N  .x.  X ) ) )
3024, 25, 26, 28, 29syl13anc 1230 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
3123, 30eqtr3d 2510 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
32 fveq2 5872 . . . . . . 7  |-  ( (
-u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) )  -> 
( ( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) ) )
33 simpl 457 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  G  e.  Grp )
341, 5zmulcld 10984 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  N )  e.  ZZ )
35 eqid 2467 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
3614, 15, 35mulgneg 16032 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3733, 34, 27, 36syl3anc 1228 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3837fveq2d 5876 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) ) )
3914, 15mulgcl 16031 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  x.  N )  .x.  X
)  e.  B )
4033, 34, 27, 39syl3anc 1228 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  e.  B
)
4114, 35grpinvinv 15977 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( M  x.  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4240, 41syldan 470 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4338, 42eqtrd 2508 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( M  x.  N )  .x.  X
) )
4414, 15mulgcl 16031 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4533, 5, 27, 44syl3anc 1228 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
4614, 15, 35mulgneg 16032 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )
4733, 1, 45, 46syl3anc 1228 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( ( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )
4847fveq2d 5876 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) ) )
4914, 15mulgcl 16031 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( M  .x.  ( N  .x.  X ) )  e.  B )
5033, 1, 45, 49syl3anc 1228 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( N  .x.  X
) )  e.  B
)
5114, 35grpinvinv 15977 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  .x.  ( N 
.x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
5250, 51syldan 470 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5348, 52eqtrd 2508 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5443, 53eqeq12d 2489 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
5532, 54syl5ib 219 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u ( M  x.  N
)  .x.  X )  =  ( -u M  .x.  ( N  .x.  X
) )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
5655imp 429 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u ( M  x.  N )  .x.  X )  =  (
-u M  .x.  ( N  .x.  X ) ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
5731, 56syldan 470 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
5857ex 434 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
599ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
60 simprl 755 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  NN0 )
61 simprr 756 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
6227adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
6314, 15mulgnn0ass 16043 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  -u N ) 
.x.  X )  =  ( M  .x.  ( -u N  .x.  X ) ) )
6459, 60, 61, 62, 63syl13anc 1230 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( M 
.x.  ( -u N  .x.  X ) ) )
6519, 20mulneg2d 10022 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  -u N )  = 
-u ( M  x.  N ) )
6665adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
6766oveq1d 6310 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
6814, 15, 35mulgneg 16032 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
6933, 5, 27, 68syl3anc 1228 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
7069oveq2d 6311 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( M  .x.  (
( invg `  G ) `  ( N  .x.  X ) ) ) )
7114, 15, 35mulgneg2 16041 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( M  .x.  ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
7233, 1, 45, 71syl3anc 1228 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( M  .x.  ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
7370, 72eqtr4d 2511 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7473adantr 465 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7564, 67, 743eqtr3d 2516 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
7675, 56syldan 470 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
7776ex 434 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
789ad2antrr 725 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
79 simprl 755 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u M  e.  NN0 )
80 simprr 756 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
8127adantr 465 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
8214, 15mulgnn0ass 16043 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( -u M  .x.  ( -u N  .x.  X ) ) )
8378, 79, 80, 81, 82syl13anc 1230 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  (
-u M  .x.  ( -u N  .x.  X ) ) )
8419, 20mul2negd 10023 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  -u N )  =  ( M  x.  N
) )
8584oveq1d 6310 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
8685adantr 465 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  ( ( M  x.  N
)  .x.  X )
)
8733adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Grp )
881adantr 465 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  ZZ )
89 nn0z 10899 . . . . . . . . 9  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
9089ad2antll 728 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  ZZ )
9114, 15mulgcl 16031 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
9287, 90, 81, 91syl3anc 1228 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u N  .x.  X
)  e.  B )
9314, 15, 35mulgneg2 16041 . . . . . . 7  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( -u N  .x.  X )  e.  B )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9487, 88, 92, 93syl3anc 1228 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9514, 15, 35mulgneg 16032 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( invg `  G ) `  ( -u N  .x.  X ) ) )
9687, 90, 81, 95syl3anc 1228 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( ( invg `  G
) `  ( -u N  .x.  X ) ) )
9720negnegd 9933 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  -u -u N  =  N )
9897adantr 465 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u -u N  =  N
)
9998oveq1d 6310 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
10096, 99eqtr3d 2510 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( invg `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
101100oveq2d 6311 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( M  .x.  ( N 
.x.  X ) ) )
10294, 101eqtrd 2508 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
10383, 86, 1023eqtr3d 2516 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
104103ex 434 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
10518, 58, 77, 104ccased 945 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e. 
NN0  \/  -u N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
1064, 8, 105mp2and 679 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5594  (class class class)co 6295   RRcr 9503    x. cmul 9509   -ucneg 9818   NN0cn0 10807   ZZcz 10876   Basecbs 14507   Mndcmnd 15793   Grpcgrp 15925   invgcminusg 15926  .gcmg 15928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-seq 12088  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-mulg 15932
This theorem is referenced by:  odmod  16443  odmulgid  16449  odbezout  16453  gexdvdsi  16476  pgpfac1lem2  16998  pgpfac1lem3a  16999  pgpfac1lem3  17000  mulgrhm  18401  mulgrhmOLD  18404  zlmlmod  18429
  Copyright terms: Public domain W3C validator