MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexpz Structured version   Unicode version

Theorem mulexpz 11909
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
mulexpz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexpz
StepHypRef Expression
1 elznn0nn 10665 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 simpl 457 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
3 simpl 457 . . . . . 6  |-  ( ( B  e.  CC  /\  B  =/=  0 )  ->  B  e.  CC )
42, 3anim12i 566 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A  e.  CC  /\  B  e.  CC ) )
5 mulexp 11908 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
653expa 1187 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) )
74, 6sylan 471 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  NN0 )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
8 simplll 757 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
9 simplrl 759 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  e.  CC )
108, 9mulcld 9411 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B )  e.  CC )
11 recn 9377 . . . . . . 7  |-  ( N  e.  RR  ->  N  e.  CC )
1211ad2antrl 727 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
13 nnnn0 10591 . . . . . . 7  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1413ad2antll 728 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
15 expneg2 11879 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
1610, 12, 14, 15syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
17 expneg2 11879 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
188, 12, 14, 17syl3anc 1218 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
19 expneg2 11879 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
209, 12, 14, 19syl3anc 1218 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
2118, 20oveq12d 6114 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
22 mulexp 11908 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
238, 9, 14, 22syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
2423oveq2d 6112 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( 1  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
25 1t1e1 10474 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2625oveq1i 6106 . . . . . . . 8  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) )
2724, 26syl6eqr 2493 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
28 expcl 11888 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
298, 14, 28syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
30 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
31 nnz 10673 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
3231ad2antll 728 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
33 expne0i 11901 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N )  =/=  0 )
348, 30, 32, 33syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  =/=  0 )
35 expcl 11888 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ -u N
)  e.  CC )
369, 14, 35syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  e.  CC )
37 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  =/=  0 )
38 expne0i 11901 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  -u N  e.  ZZ )  ->  ( B ^ -u N )  =/=  0 )
399, 37, 32, 38syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  =/=  0 )
40 ax-1cn 9345 . . . . . . . . 9  |-  1  e.  CC
41 divmuldiv 10036 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) ) )  ->  ( (
1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4240, 40, 41mpanl12 682 . . . . . . . 8  |-  ( ( ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) )  ->  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) ) )
4329, 34, 36, 39, 42syl22anc 1219 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4427, 43eqtr4d 2478 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
4521, 44eqtr4d 2478 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
4616, 45eqtr4d 2478 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
477, 46jaodan 783 . . 3  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
481, 47sylan2b 475 . 2  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
49483impa 1182 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    x. cmul 9292   -ucneg 9601    / cdiv 9998   NNcn 10327   NN0cn0 10584   ZZcz 10651   ^cexp 11870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867  df-seq 11812  df-exp 11871
This theorem is referenced by:  exprec  11910
  Copyright terms: Public domain W3C validator