MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexpz Structured version   Unicode version

Theorem mulexpz 12184
Description: Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
mulexpz  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexpz
StepHypRef Expression
1 elznn0nn 10888 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 simpl 457 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
3 simpl 457 . . . . . 6  |-  ( ( B  e.  CC  /\  B  =/=  0 )  ->  B  e.  CC )
42, 3anim12i 566 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A  e.  CC  /\  B  e.  CC ) )
5 mulexp 12183 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
653expa 1196 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) )
74, 6sylan 471 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  NN0 )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
8 simplll 757 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
9 simplrl 759 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  e.  CC )
108, 9mulcld 9626 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B )  e.  CC )
11 recn 9592 . . . . . . 7  |-  ( N  e.  RR  ->  N  e.  CC )
1211ad2antrl 727 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
13 nnnn0 10812 . . . . . . 7  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1413ad2antll 728 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
15 expneg2 12153 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
1610, 12, 14, 15syl3anc 1228 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
17 expneg2 12153 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
188, 12, 14, 17syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
19 expneg2 12153 . . . . . . . 8  |-  ( ( B  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
209, 12, 14, 19syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
2118, 20oveq12d 6312 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
22 mulexp 12183 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
238, 9, 14, 22syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
2423oveq2d 6310 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( 1  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
25 1t1e1 10693 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2625oveq1i 6304 . . . . . . . 8  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) )
2724, 26syl6eqr 2526 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
28 expcl 12162 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
298, 14, 28syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
30 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  =/=  0 )
31 nnz 10896 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
3231ad2antll 728 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
33 expne0i 12176 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N )  =/=  0 )
348, 30, 32, 33syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  =/=  0 )
35 expcl 12162 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ -u N
)  e.  CC )
369, 14, 35syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  e.  CC )
37 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  =/=  0 )
38 expne0i 12176 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  -u N  e.  ZZ )  ->  ( B ^ -u N )  =/=  0 )
399, 37, 32, 38syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  =/=  0 )
40 ax-1cn 9560 . . . . . . . . 9  |-  1  e.  CC
41 divmuldiv 10254 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) ) )  ->  ( (
1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4240, 40, 41mpanl12 682 . . . . . . . 8  |-  ( ( ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
)  =/=  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N )  =/=  0 ) )  ->  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) ) )
4329, 34, 36, 39, 42syl22anc 1229 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4427, 43eqtr4d 2511 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
4521, 44eqtr4d 2511 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
4616, 45eqtr4d 2511 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
477, 46jaodan 783 . . 3  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
481, 47sylan2b 475 . 2  |-  ( ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
49483impa 1191 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  N  e.  ZZ )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662  (class class class)co 6294   CCcc 9500   RRcr 9501   0cc0 9502   1c1 9503    x. cmul 9507   -ucneg 9816    / cdiv 10216   NNcn 10546   NN0cn0 10805   ZZcz 10874   ^cexp 12144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-2nd 6795  df-recs 7052  df-rdg 7086  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-div 10217  df-nn 10547  df-n0 10806  df-z 10875  df-uz 11093  df-seq 12086  df-exp 12145
This theorem is referenced by:  exprec  12185
  Copyright terms: Public domain W3C validator