MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulexp Structured version   Unicode version

Theorem mulexp 12187
Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )

Proof of Theorem mulexp
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6278 . . . . . 6  |-  ( j  =  0  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
0 ) )
2 oveq2 6278 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
3 oveq2 6278 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
42, 3oveq12d 6288 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) )
51, 4eqeq12d 2476 . . . . 5  |-  ( j  =  0  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^
0 )  x.  ( B ^ 0 ) ) ) )
65imbi2d 314 . . . 4  |-  ( j  =  0  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^ 0 ) ) ) ) )
7 oveq2 6278 . . . . . 6  |-  ( j  =  k  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
k ) )
8 oveq2 6278 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
9 oveq2 6278 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
108, 9oveq12d 6288 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )
117, 10eqeq12d 2476 . . . . 5  |-  ( j  =  k  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ k )  =  ( ( A ^
k )  x.  ( B ^ k ) ) ) )
1211imbi2d 314 . . . 4  |-  ( j  =  k  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) ) ) )
13 oveq2 6278 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^
( k  +  1 ) ) )
14 oveq2 6278 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
15 oveq2 6278 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
1614, 15oveq12d 6288 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) )
1713, 16eqeq12d 2476 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) )
1817imbi2d 314 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
19 oveq2 6278 . . . . . 6  |-  ( j  =  N  ->  (
( A  x.  B
) ^ j )  =  ( ( A  x.  B ) ^ N ) )
20 oveq2 6278 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
21 oveq2 6278 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
2220, 21oveq12d 6288 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  x.  ( B ^ j ) )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
2319, 22eqeq12d 2476 . . . . 5  |-  ( j  =  N  ->  (
( ( A  x.  B ) ^ j
)  =  ( ( A ^ j )  x.  ( B ^
j ) )  <->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) ) )
2423imbi2d 314 . . . 4  |-  ( j  =  N  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ j )  =  ( ( A ^ j )  x.  ( B ^ j
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
25 mulcl 9565 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
26 exp0 12152 . . . . . 6  |-  ( ( A  x.  B )  e.  CC  ->  (
( A  x.  B
) ^ 0 )  =  1 )
2725, 26syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  1 )
28 exp0 12152 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
29 exp0 12152 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3028, 29oveqan12d 6289 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  ( 1  x.  1 ) )
31 1t1e1 10679 . . . . . 6  |-  ( 1  x.  1 )  =  1
3230, 31syl6eq 2511 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
0 )  x.  ( B ^ 0 ) )  =  1 )
3327, 32eqtr4d 2498 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ 0 )  =  ( ( A ^ 0 )  x.  ( B ^
0 ) ) )
34 expp1 12155 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
3525, 34sylan 469 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) ) )
3635adantr 463 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( ( A  x.  B
) ^ k )  x.  ( A  x.  B ) ) )
37 oveq1 6277 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) )  ->  (
( ( A  x.  B ) ^ k
)  x.  ( A  x.  B ) )  =  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) ) )
38 expcl 12166 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
39 expcl 12166 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  CC )
4038, 39anim12i 564 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( B  e.  CC  /\  k  e.  NN0 )
)  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
4140anandirs 829 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  e.  CC  /\  ( B ^ k )  e.  CC ) )
42 simpl 455 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A  e.  CC  /\  B  e.  CC ) )
43 mul4 9738 . . . . . . . . . . 11  |-  ( ( ( ( A ^
k )  e.  CC  /\  ( B ^ k
)  e.  CC )  /\  ( A  e.  CC  /\  B  e.  CC ) )  -> 
( ( ( A ^ k )  x.  ( B ^ k
) )  x.  ( A  x.  B )
)  =  ( ( ( A ^ k
)  x.  A )  x.  ( ( B ^ k )  x.  B ) ) )
4441, 42, 43syl2anc 659 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
45 expp1 12155 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
4645adantlr 712 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
47 expp1 12155 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
4847adantll 711 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
4946, 48oveq12d 6288 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) )  =  ( ( ( A ^
k )  x.  A
)  x.  ( ( B ^ k )  x.  B ) ) )
5044, 49eqtr4d 2498 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  x.  ( B ^
k ) )  x.  ( A  x.  B
) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) )
5137, 50sylan9eqr 2517 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( ( A  x.  B ) ^
k )  x.  ( A  x.  B )
)  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5236, 51eqtrd 2495 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  k  e.  NN0 )  /\  (
( A  x.  B
) ^ k )  =  ( ( A ^ k )  x.  ( B ^ k
) ) )  -> 
( ( A  x.  B ) ^ (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^
( k  +  1 ) ) ) )
5352exp31 602 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( k  e.  NN0  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5453com12 31 . . . . 5  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) )  ->  ( ( A  x.  B ) ^
( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  x.  ( B ^ ( k  +  1 ) ) ) ) ) )
5554a2d 26 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^
k )  =  ( ( A ^ k
)  x.  ( B ^ k ) ) )  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) ^ ( k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  x.  ( B ^ (
k  +  1 ) ) ) ) ) )
566, 12, 18, 24, 33, 55nn0ind 10955 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) ) )
5756expdcom 437 . 2  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( N  e.  NN0  ->  ( ( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) ) ) )
58573imp 1188 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823  (class class class)co 6270   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   NN0cn0 10791   ^cexp 12148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-seq 12090  df-exp 12149
This theorem is referenced by:  mulexpz  12188  expdiv  12198  expubnd  12208  sqmul  12213  mulexpd  12307  efi4p  13954  logtayl2  23211  ipidsq  25821  fprodexp  31839
  Copyright terms: Public domain W3C validator