MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpqlem Structured version   Unicode version

Theorem mulerpqlem 9329
Description: Lemma for mulerpq 9331. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpqlem  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  .pQ  C )  ~Q  ( B 
.pQ  C ) ) )

Proof of Theorem mulerpqlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 6811 . . . . 5  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
213ad2ant1 1017 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  A )  e.  N. )
3 xp1st 6811 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
433ad2ant3 1019 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  C )  e.  N. )
5 mulclpi 9267 . . . 4  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  C ) )  e. 
N. )
62, 4, 5syl2anc 661 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 1st `  C
) )  e.  N. )
7 xp2nd 6812 . . . . 5  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
873ad2ant1 1017 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  A )  e.  N. )
9 xp2nd 6812 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
1093ad2ant3 1019 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  C )  e.  N. )
11 mulclpi 9267 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
128, 10, 11syl2anc 661 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  A )  .N  ( 2nd `  C
) )  e.  N. )
13 xp1st 6811 . . . . 5  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
14133ad2ant2 1018 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  B )  e.  N. )
15 mulclpi 9267 . . . 4  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
1614, 4, 15syl2anc 661 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  B )  .N  ( 1st `  C
) )  e.  N. )
17 xp2nd 6812 . . . . 5  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
18173ad2ant2 1018 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  B )  e.  N. )
19 mulclpi 9267 . . . 4  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
2018, 10, 19syl2anc 661 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  N. )
21 enqbreq 9293 . . 3  |-  ( ( ( ( ( 1st `  A )  .N  ( 1st `  C ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )  /\  (
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N.  /\  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  N. ) )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
226, 12, 16, 20, 21syl22anc 1229 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
23 mulpipq2 9313 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  C )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
24233adant2 1015 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  .pQ  C )  =  <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
25 mulpipq2 9313 . . . 4  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
26253adant1 1014 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( B  .pQ  C )  =  <. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
2724, 26breq12d 4460 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( A  .pQ  C )  ~Q  ( B  .pQ  C )  <->  <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. ) )
28 enqbreq2 9294 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
29283adant3 1016 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B ) )  =  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) )
30 mulclpi 9267 . . . . 5  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
314, 10, 30syl2anc 661 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  C )  .N  ( 2nd `  C
) )  e.  N. )
32 mulclpi 9267 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
332, 18, 32syl2anc 661 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )
34 mulcanpi 9274 . . . 4  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
3531, 33, 34syl2anc 661 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
36 mulcompi 9270 . . . . . 6  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  C ) ) )
37 fvex 5874 . . . . . . 7  |-  ( 1st `  A )  e.  _V
38 fvex 5874 . . . . . . 7  |-  ( 2nd `  B )  e.  _V
39 fvex 5874 . . . . . . 7  |-  ( 1st `  C )  e.  _V
40 mulcompi 9270 . . . . . . 7  |-  ( x  .N  y )  =  ( y  .N  x
)
41 mulasspi 9271 . . . . . . 7  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
42 fvex 5874 . . . . . . 7  |-  ( 2nd `  C )  e.  _V
4337, 38, 39, 40, 41, 42caov4 6488 . . . . . 6  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
4436, 43eqtri 2496 . . . . 5  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
45 mulcompi 9270 . . . . . 6  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  C ) ) )
46 fvex 5874 . . . . . . 7  |-  ( 1st `  B )  e.  _V
47 fvex 5874 . . . . . . 7  |-  ( 2nd `  A )  e.  _V
4846, 47, 39, 40, 41, 42caov4 6488 . . . . . 6  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  B )  .N  ( 1st `  C
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  C ) ) )
49 mulcompi 9270 . . . . . 6  |-  ( ( ( 1st `  B
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) )
5045, 48, 493eqtri 2500 . . . . 5  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) )
5144, 50eqeq12i 2487 . . . 4  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) )
5251a1i 11 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
5329, 35, 523bitr2d 281 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
5422, 27, 533bitr4rd 286 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  .pQ  C )  ~Q  ( B 
.pQ  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767   <.cop 4033   class class class wbr 4447    X. cxp 4997   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780   N.cnpi 9218    .N cmi 9220    .pQ cmpq 9223    ~Q ceq 9225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-oadd 7131  df-omul 7132  df-ni 9246  df-mi 9248  df-mpq 9283  df-enq 9285
This theorem is referenced by:  mulerpq  9331
  Copyright terms: Public domain W3C validator