MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpq Structured version   Unicode version

Theorem mulerpq 9395
Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpq  |-  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( A  .pQ  B ) )

Proof of Theorem mulerpq
StepHypRef Expression
1 nqercl 9369 . . . 4  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e. 
Q. )
2 nqercl 9369 . . . 4  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e. 
Q. )
3 mulpqnq 9379 . . . 4  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) ) )
41, 2, 3syl2an 480 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .Q  ( /Q
`  B ) )  =  ( /Q `  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) ) )
5 enqer 9359 . . . . . 6  |-  ~Q  Er  ( N.  X.  N. )
65a1i 11 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ~Q  Er  ( N.  X.  N. )
)
7 nqerrel 9370 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  A  ~Q  ( /Q `  A ) )
87adantr 467 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  A  ~Q  ( /Q `  A
) )
9 elpqn 9363 . . . . . . . . 9  |-  ( ( /Q `  A )  e.  Q.  ->  ( /Q `  A )  e.  ( N.  X.  N. ) )
101, 9syl 17 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( /Q
`  A )  e.  ( N.  X.  N. ) )
11 mulerpqlem 9393 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  ( /Q `  A
)  <->  ( A  .pQ  B )  ~Q  ( ( /Q `  A ) 
.pQ  B ) ) )
12113exp 1205 . . . . . . . 8  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) ) ) )
1310, 12mpd 15 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( B  e.  ( N.  X.  N. )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) ) )
1413imp 431 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  ( /Q `  A )  <->  ( A  .pQ  B )  ~Q  (
( /Q `  A
)  .pQ  B )
) )
158, 14mpbid 214 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  B
) )
16 nqerrel 9370 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  B  ~Q  ( /Q `  B ) )
1716adantl 468 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  ~Q  ( /Q `  B
) )
18 elpqn 9363 . . . . . . . . . 10  |-  ( ( /Q `  B )  e.  Q.  ->  ( /Q `  B )  e.  ( N.  X.  N. ) )
192, 18syl 17 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( /Q
`  B )  e.  ( N.  X.  N. ) )
20 mulerpqlem 9393 . . . . . . . . . 10  |-  ( ( B  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. )  /\  ( /Q `  A )  e.  ( N.  X.  N. )
)  ->  ( B  ~Q  ( /Q `  B
)  <->  ( B  .pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B ) 
.pQ  ( /Q `  A ) ) ) )
21203exp 1205 . . . . . . . . 9  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  B )  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) ) ) )
2219, 21mpd 15 . . . . . . . 8  |-  ( B  e.  ( N.  X.  N. )  ->  ( ( /Q `  A )  e.  ( N.  X.  N. )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) ) )
2310, 22mpan9 472 . . . . . . 7  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  ~Q  ( /Q `  B )  <->  ( B  .pQ  ( /Q `  A
) )  ~Q  (
( /Q `  B
)  .pQ  ( /Q `  A ) ) ) )
2417, 23mpbid 214 . . . . . 6  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  ( /Q `  A ) )  ~Q  ( ( /Q `  B )  .pQ  ( /Q `  A ) ) )
25 mulcompq 9390 . . . . . 6  |-  ( B 
.pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  .pQ  B
)
26 mulcompq 9390 . . . . . 6  |-  ( ( /Q `  B ) 
.pQ  ( /Q `  A ) )  =  ( ( /Q `  A )  .pQ  ( /Q `  B ) )
2724, 25, 263brtr3g 4461 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) )
286, 15, 27ertrd 7396 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) ) )
29 mulpqf 9384 . . . . . 6  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3029fovcl 6421 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  e.  ( N.  X.  N. ) )
3129fovcl 6421 . . . . . 6  |-  ( ( ( /Q `  A
)  e.  ( N. 
X.  N. )  /\  ( /Q `  B )  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
3210, 19, 31syl2an 480 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )
33 nqereq 9373 . . . . 5  |-  ( ( ( A  .pQ  B
)  e.  ( N. 
X.  N. )  /\  (
( /Q `  A
)  .pQ  ( /Q `  B ) )  e.  ( N.  X.  N. ) )  ->  (
( A  .pQ  B
)  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  .pQ  ( /Q `  B ) ) ) ) )
3430, 32, 33syl2anc 666 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( A  .pQ  B
)  ~Q  ( ( /Q `  A )  .pQ  ( /Q `  B ) )  <->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q
`  ( ( /Q
`  A )  .pQ  ( /Q `  B ) ) ) ) )
3528, 34mpbid 214 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  .pQ  B ) )  =  ( /Q `  ( ( /Q `  A ) 
.pQ  ( /Q `  B ) ) ) )
364, 35eqtr4d 2467 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  (
( /Q `  A
)  .Q  ( /Q
`  B ) )  =  ( /Q `  ( A  .pQ  B ) ) )
37 0nnq 9362 . . . . . . . 8  |-  -.  (/)  e.  Q.
38 nqerf 9368 . . . . . . . . . . . 12  |-  /Q :
( N.  X.  N. )
--> Q.
3938fdmi 5757 . . . . . . . . . . 11  |-  dom  /Q  =  ( N.  X.  N. )
4039eleq2i 2502 . . . . . . . . . 10  |-  ( A  e.  dom  /Q  <->  A  e.  ( N.  X.  N. )
)
41 ndmfv 5911 . . . . . . . . . 10  |-  ( -.  A  e.  dom  /Q  ->  ( /Q `  A
)  =  (/) )
4240, 41sylnbir 309 . . . . . . . . 9  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  ( /Q `  A )  =  (/) )
4342eleq1d 2492 . . . . . . . 8  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  (
( /Q `  A
)  e.  Q.  <->  (/)  e.  Q. ) )
4437, 43mtbiri 305 . . . . . . 7  |-  ( -.  A  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  A )  e.  Q. )
4544con4i 134 . . . . . 6  |-  ( ( /Q `  A )  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
4639eleq2i 2502 . . . . . . . . . 10  |-  ( B  e.  dom  /Q  <->  B  e.  ( N.  X.  N. )
)
47 ndmfv 5911 . . . . . . . . . 10  |-  ( -.  B  e.  dom  /Q  ->  ( /Q `  B
)  =  (/) )
4846, 47sylnbir 309 . . . . . . . . 9  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  ( /Q `  B )  =  (/) )
4948eleq1d 2492 . . . . . . . 8  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  (
( /Q `  B
)  e.  Q.  <->  (/)  e.  Q. ) )
5037, 49mtbiri 305 . . . . . . 7  |-  ( -.  B  e.  ( N. 
X.  N. )  ->  -.  ( /Q `  B )  e.  Q. )
5150con4i 134 . . . . . 6  |-  ( ( /Q `  B )  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
5245, 51anim12i 569 . . . . 5  |-  ( ( ( /Q `  A
)  e.  Q.  /\  ( /Q `  B )  e.  Q. )  -> 
( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) ) )
5352con3i 141 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( ( /Q `  A )  e. 
Q.  /\  ( /Q `  B )  e.  Q. ) )
54 mulnqf 9387 . . . . . 6  |-  .Q  :
( Q.  X.  Q. )
--> Q.
5554fdmi 5757 . . . . 5  |-  dom  .Q  =  ( Q.  X.  Q. )
5655ndmov 6473 . . . 4  |-  ( -.  ( ( /Q `  A )  e.  Q.  /\  ( /Q `  B
)  e.  Q. )  ->  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  (/) )
5753, 56syl 17 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  .Q  ( /Q `  B
) )  =  (/) )
58 0nelxp 4887 . . . . . 6  |-  -.  (/)  e.  ( N.  X.  N. )
5939eleq2i 2502 . . . . . 6  |-  ( (/)  e.  dom  /Q  <->  (/)  e.  ( N.  X.  N. )
)
6058, 59mtbir 301 . . . . 5  |-  -.  (/)  e.  dom  /Q
6129fdmi 5757 . . . . . . 7  |-  dom  .pQ  =  ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) )
6261ndmov 6473 . . . . . 6  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  =  (/) )
6362eleq1d 2492 . . . . 5  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( A 
.pQ  B )  e. 
dom  /Q  <->  (/)  e.  dom  /Q ) )
6460, 63mtbiri 305 . . . 4  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  -.  ( A  .pQ  B )  e.  dom  /Q )
65 ndmfv 5911 . . . 4  |-  ( -.  ( A  .pQ  B
)  e.  dom  /Q  ->  ( /Q `  ( A  .pQ  B ) )  =  (/) )
6664, 65syl 17 . . 3  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( /Q `  ( A  .pQ  B ) )  =  (/) )
6757, 66eqtr4d 2467 . 2  |-  ( -.  ( A  e.  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( ( /Q
`  A )  .Q  ( /Q `  B
) )  =  ( /Q `  ( A 
.pQ  B ) ) )
6836, 67pm2.61i 168 1  |-  ( ( /Q `  A )  .Q  ( /Q `  B ) )  =  ( /Q `  ( A  .pQ  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1873   (/)c0 3767   class class class wbr 4429    X. cxp 4857   dom cdm 4859   ` cfv 5607  (class class class)co 6311    Er wer 7377   N.cnpi 9282    .pQ cmpq 9287    ~Q ceq 9289   Q.cnq 9290   /Qcerq 9292    .Q cmq 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-tp 4009  df-op 4011  df-uni 4226  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-tr 4525  df-eprel 4770  df-id 4774  df-po 4780  df-so 4781  df-fr 4818  df-we 4820  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-pred 5405  df-ord 5451  df-on 5452  df-lim 5453  df-suc 5454  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-ov 6314  df-oprab 6315  df-mpt2 6316  df-om 6713  df-1st 6813  df-2nd 6814  df-wrecs 7045  df-recs 7107  df-rdg 7145  df-1o 7199  df-oadd 7203  df-omul 7204  df-er 7380  df-ni 9310  df-mi 9312  df-lti 9313  df-mpq 9347  df-enq 9349  df-nq 9350  df-erq 9351  df-mq 9353  df-1nq 9354
This theorem is referenced by:  mulassnq  9397  distrnq  9399  recmulnq  9402
  Copyright terms: Public domain W3C validator