MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxp Structured version   Unicode version

Theorem mulcxp 22130
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
mulcxp  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )

Proof of Theorem mulcxp
StepHypRef Expression
1 simp1l 1012 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  RR )
21recnd 9412 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  CC )
32mul01d 9568 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  x.  0 )  =  0 )
43oveq1d 6106 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^c  C )  =  ( 0  ^c  C ) )
5 simp3 990 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  C  e.  CC )
62, 5mulcxplem 22129 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^c  C )  =  ( ( A  ^c  C )  x.  (
0  ^c  C ) ) )
74, 6eqtrd 2475 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^c  C )  =  ( ( A  ^c  C )  x.  (
0  ^c  C ) ) )
8 oveq2 6099 . . . . 5  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
98oveq1d 6106 . . . 4  |-  ( B  =  0  ->  (
( A  x.  B
)  ^c  C )  =  ( ( A  x.  0 )  ^c  C ) )
10 oveq1 6098 . . . . 5  |-  ( B  =  0  ->  ( B  ^c  C )  =  ( 0  ^c  C ) )
1110oveq2d 6107 . . . 4  |-  ( B  =  0  ->  (
( A  ^c  C )  x.  ( B  ^c  C ) )  =  ( ( A  ^c  C )  x.  ( 0  ^c  C ) ) )
129, 11eqeq12d 2457 . . 3  |-  ( B  =  0  ->  (
( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) )  <->  ( ( A  x.  0 )  ^c  C )  =  ( ( A  ^c  C )  x.  (
0  ^c  C ) ) ) )
137, 12syl5ibrcom 222 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =  0  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) ) )
14 simp2l 1014 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  RR )
1514recnd 9412 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  CC )
1615mul02d 9567 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  x.  B )  =  0 )
1716oveq1d 6106 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^c  C )  =  ( 0  ^c  C ) )
1815, 5mulcxplem 22129 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^c  C )  =  ( ( B  ^c  C )  x.  (
0  ^c  C ) ) )
19 cxpcl 22119 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  ^c  C )  e.  CC )
2015, 5, 19syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  ^c  C )  e.  CC )
21 0cn 9378 . . . . . . . . 9  |-  0  e.  CC
22 cxpcl 22119 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  C  e.  CC )  ->  ( 0  ^c  C )  e.  CC )
2321, 5, 22sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^c  C )  e.  CC )
2420, 23mulcomd 9407 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( B  ^c  C )  x.  ( 0  ^c  C ) )  =  ( ( 0  ^c  C )  x.  ( B  ^c  C ) ) )
2518, 24eqtrd 2475 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^c  C )  =  ( ( 0  ^c  C )  x.  ( B  ^c  C ) ) )
2617, 25eqtrd 2475 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^c  C )  =  ( ( 0  ^c  C )  x.  ( B  ^c  C ) ) )
27 oveq1 6098 . . . . . . 7  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
2827oveq1d 6106 . . . . . 6  |-  ( A  =  0  ->  (
( A  x.  B
)  ^c  C )  =  ( ( 0  x.  B )  ^c  C ) )
29 oveq1 6098 . . . . . . 7  |-  ( A  =  0  ->  ( A  ^c  C )  =  ( 0  ^c  C ) )
3029oveq1d 6106 . . . . . 6  |-  ( A  =  0  ->  (
( A  ^c  C )  x.  ( B  ^c  C ) )  =  ( ( 0  ^c  C )  x.  ( B  ^c  C ) ) )
3128, 30eqeq12d 2457 . . . . 5  |-  ( A  =  0  ->  (
( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) )  <->  ( ( 0  x.  B )  ^c  C )  =  ( ( 0  ^c  C )  x.  ( B  ^c  C ) ) ) )
3226, 31syl5ibrcom 222 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) ) )
3332a1dd 46 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) ) ) )
341adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR )
35 simpl1r 1040 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  A )
36 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  =/=  0 )
3734, 35, 36ne0gt0d 9511 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  A )
3834, 37elrpd 11025 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR+ )
3914adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR )
40 simpl2r 1042 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  B )
41 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  =/=  0 )
4239, 40, 41ne0gt0d 9511 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  B )
4339, 42elrpd 11025 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR+ )
4438, 43relogmuld 22074 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  ( A  x.  B )
)  =  ( ( log `  A )  +  ( log `  B
) ) )
4544oveq2d 6107 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( C  x.  ( ( log `  A
)  +  ( log `  B ) ) ) )
465adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  C  e.  CC )
472adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  CC )
4847, 36logcld 22022 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  A
)  e.  CC )
4915adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  CC )
5049, 41logcld 22022 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  B
)  e.  CC )
5146, 48, 50adddid 9410 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  (
( log `  A
)  +  ( log `  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5245, 51eqtrd 2475 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5352fveq2d 5695 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) ) )
5446, 48mulcld 9406 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  A ) )  e.  CC )
5546, 50mulcld 9406 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  B ) )  e.  CC )
56 efadd 13379 . . . . . . 7  |-  ( ( ( C  x.  ( log `  A ) )  e.  CC  /\  ( C  x.  ( log `  B ) )  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5754, 55, 56syl2anc 661 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5853, 57eqtrd 2475 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5947, 49mulcld 9406 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  CC )
6047, 49, 36, 41mulne0d 9988 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
61 cxpef 22110 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  x.  B
)  =/=  0  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
6259, 60, 46, 61syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
63 cxpef 22110 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
6447, 36, 46, 63syl3anc 1218 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A
) ) ) )
65 cxpef 22110 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
6649, 41, 46, 65syl3anc 1218 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B
) ) ) )
6764, 66oveq12d 6109 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  ^c  C )  x.  ( B  ^c  C ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
6858, 62, 673eqtr4d 2485 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )
6968exp32 605 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =/=  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) ) ) )
7033, 69pm2.61dne 2688 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) ) )
7113, 70pm2.61dne 2688 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282    + caddc 9285    x. cmul 9287    <_ cle 9419   expce 13347   logclog 22006    ^c ccxp 22007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-fac 12052  df-bc 12079  df-hash 12104  df-shft 12556  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-limsup 12949  df-clim 12966  df-rlim 12967  df-sum 13164  df-ef 13353  df-sin 13355  df-cos 13356  df-pi 13358  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-haus 18919  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-limc 21341  df-dv 21342  df-log 22008  df-cxp 22009
This theorem is referenced by:  cxprec  22131  divcxp  22132  mulcxpd  22173
  Copyright terms: Public domain W3C validator