MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcn2 Unicode version

Theorem mulcn2 12344
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 10592 . . . 4  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 978 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 abscl 12038 . . . . . 6  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
433ad2ant3 980 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  C )  e.  RR )
5 abscl 12038 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
653ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  B )  e.  RR )
7 1re 9046 . . . . . . . . 9  |-  1  e.  RR
8 readdcl 9029 . . . . . . . . 9  |-  ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  B
)  +  1 )  e.  RR )
96, 7, 8sylancl 644 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR )
10 absge0 12047 . . . . . . . . . 10  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
11 0lt1 9506 . . . . . . . . . . 11  |-  0  <  1
12 addgegt0 9471 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  /\  ( 0  <_  ( abs `  B )  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
1312an4s 800 . . . . . . . . . . 11  |-  ( ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  /\  (
1  e.  RR  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
147, 11, 13mpanr12 667 . . . . . . . . . 10  |-  ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  ->  0  <  ( ( abs `  B
)  +  1 ) )
155, 10, 14syl2anc 643 . . . . . . . . 9  |-  ( B  e.  CC  ->  0  <  ( ( abs `  B
)  +  1 ) )
16153ad2ant2 979 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  B
)  +  1 ) )
179, 16elrpd 10602 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR+ )
182, 17rpdivcld 10621 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )
1918rpred 10604 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR )
204, 19readdcld 9071 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )
21 absge0 12047 . . . . . 6  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
22213ad2ant3 980 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <_  ( abs `  C
) )
23 elrp 10570 . . . . . 6  |-  ( ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  <->  ( ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
24 addgegt0 9471 . . . . . . 7  |-  ( ( ( ( abs `  C
)  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( abs `  C
)  /\  0  <  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2524an4s 800 . . . . . 6  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
0  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) )
2623, 25sylan2b 462 . . . . 5  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
274, 22, 18, 26syl21anc 1183 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2820, 27elrpd 10602 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR+ )
292, 28rpdivcld 10621 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  e.  RR+ )
30 simprl 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
31 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
3230, 31subcld 9367 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  -  B )  e.  CC )
3332abscld 12193 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( u  -  B
) )  e.  RR )
342adantr 452 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR+ )
3534rpred 10604 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR )
3628adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR+ )
3733, 35, 36ltmuldivd 10647 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
38 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
39 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
4038, 39abs2difd 12214 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <_  ( abs `  ( v  -  C
) ) )
4138abscld 12193 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  v )  e.  RR )
424adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  C )  e.  RR )
4341, 42resubcld 9421 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  e.  RR )
4438, 39subcld 9367 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( v  -  C )  e.  CC )
4544abscld 12193 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( v  -  C
) )  e.  RR )
4619adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  e.  RR )
47 lelttr 9121 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  e.  RR  /\  ( abs `  ( v  -  C
) )  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  ->  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4843, 45, 46, 47syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4940, 48mpand 657 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
5041, 42, 46ltsubadd2d 9580 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  v
)  -  ( abs `  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  <->  ( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5149, 50sylibd 206 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5220adantr 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR )
53 ltle 9119 . . . . . . . . . . . 12  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )  ->  (
( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5441, 52, 53syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  < 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5551, 54syld 42 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <_  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5632absge0d 12201 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  0  <_  ( abs `  ( u  -  B ) ) )
57 lemul2a 9821 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  /\  ( abs `  v )  <_  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) )
5857ex 424 . . . . . . . . . . 11  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  -> 
( ( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
5941, 52, 33, 56, 58syl112anc 1188 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
6033, 41remulcld 9072 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  e.  RR )
6133, 52remulcld 9072 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR )
62 lelttr 9121 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR  /\  ( A  /  2
)  e.  RR )  ->  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6360, 61, 35, 62syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6463exp3a 426 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
( ( ( abs `  ( u  -  B
) )  x.  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  <  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) ) )
6555, 59, 643syld 53 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6665com23 74 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6737, 66sylbird 227 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  ->  ( ( abs `  ( u  -  B
) )  x.  ( abs `  v ) )  <  ( A  / 
2 ) ) ) )
6867imp3a 421 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6932, 38absmuld 12211 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) ) )
7030, 31, 38subdird 9446 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  -  B )  x.  v )  =  ( ( u  x.  v )  -  ( B  x.  v )
) )
7170fveq2d 5691 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7269, 71eqtr3d 2438 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7372breq1d 4182 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
)  <->  ( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 ) ) )
7468, 73sylibd 206 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  v
) ) )  < 
( A  /  2
) ) )
7517adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR+ )
7645, 35, 75ltmuldiv2d 10648 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  <->  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )
7731, 38, 39subdid 9445 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  ( v  -  C
) )  =  ( ( B  x.  v
)  -  ( B  x.  C ) ) )
7877fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) ) )
7931, 44absmuld 12211 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8078, 79eqtr3d 2438 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8131abscld 12193 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  e.  RR )
8281lep1d 9898 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  <_  (
( abs `  B
)  +  1 ) )
839adantr 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR )
84 abscl 12038 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  ( abs `  ( v  -  C ) )  e.  RR )
85 absge0 12047 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  0  <_  ( abs `  (
v  -  C ) ) )
8684, 85jca 519 . . . . . . . . . . . 12  |-  ( ( v  -  C )  e.  CC  ->  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )
87 lemul1a 9820 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  /\  ( abs `  B )  <_  ( ( abs `  B )  +  1 ) )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) )
8887ex 424 . . . . . . . . . . . 12  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
8986, 88syl3an3 1219 . . . . . . . . . . 11  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
v  -  C )  e.  CC )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
9081, 83, 44, 89syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  <_ 
( ( abs `  B
)  +  1 )  ->  ( ( abs `  B )  x.  ( abs `  ( v  -  C ) ) )  <_  ( ( ( abs `  B )  +  1 )  x.  ( abs `  (
v  -  C ) ) ) ) )
9182, 90mpd 15 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  x.  ( abs `  (
v  -  C ) ) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9280, 91eqbrtrd 4192 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9331, 38mulcld 9064 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  v )  e.  CC )
9431, 39mulcld 9064 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  C )  e.  CC )
9593, 94subcld 9367 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  x.  v )  -  ( B  x.  C ) )  e.  CC )
9695abscld 12193 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  e.  RR )
9783, 45remulcld 9072 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  e.  RR )
98 lelttr 9121 . . . . . . . . 9  |-  ( ( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  e.  RR  /\  ( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) )  e.  RR  /\  ( A  /  2 )  e.  RR )  ->  (
( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
9996, 97, 35, 98syl3anc 1184 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10092, 99mpand 657 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  -> 
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10176, 100sylbird 227 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <  ( A  /  2 ) ) )
102101adantld 454 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C
) ) )  < 
( A  /  2
) ) )
10374, 102jcad 520 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) ) ) )
104 mulcl 9030 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
105104adantl 453 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  x.  v )  e.  CC )
106 simpl1 960 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
107106rpred 10604 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
108 abs3lem 12097 . . . . 5  |-  ( ( ( ( u  x.  v )  e.  CC  /\  ( B  x.  C
)  e.  CC )  /\  ( ( B  x.  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  x.  v )  -  ( B  x.  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
109105, 94, 93, 107, 108syl22anc 1185 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
110103, 109syld 42 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) )
111110ralrimivva 2758 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
112 breq2 4176 . . . . . 6  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( u  -  B
) )  <  y  <->  ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
113112anbi1d 686 . . . . 5  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z ) ) )
114113imbi1d 309 . . . 4  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
1151142ralbidv 2708 . . 3  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
116 breq2 4176 . . . . . 6  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( v  -  C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
117116anbi2d 685 . . . . 5  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
118117imbi1d 309 . . . 4  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
1191182ralbidv 2708 . . 3  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
120115, 119rspc2ev 3020 . 2  |-  ( ( ( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR+  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
12129, 18, 111, 120syl3anc 1184 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   RR+crp 10568   abscabs 11994
This theorem is referenced by:  climmul  12381  rlimmul  12393  mulcn  18850  mulc1cncf  18888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996
  Copyright terms: Public domain W3C validator