MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpr Structured version   Unicode version

Theorem mulclpr 9301
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )

Proof of Theorem mulclpr
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 9265 . 2  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
2 mulclnq 9228 . 2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3 ltmnq 9253 . 2  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h  .Q  f )  <Q  (
h  .Q  g ) ) )
4 mulcomnq 9234 . 2  |-  ( x  .Q  y )  =  ( y  .Q  x
)
5 mulclprlem 9300 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
61, 2, 3, 4, 5genpcl 9289 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758  (class class class)co 6201    .Q cmq 9135   P.cnp 9138    .P. cmp 9141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-inf2 7959
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-omul 7036  df-er 7212  df-ni 9153  df-mi 9155  df-lti 9156  df-mpq 9190  df-ltpq 9191  df-enq 9192  df-nq 9193  df-erq 9194  df-mq 9196  df-1nq 9197  df-rq 9198  df-ltnq 9199  df-np 9262  df-mp 9265
This theorem is referenced by:  mulasspr  9305  distrlem1pr  9306  distrlem4pr  9307  distrlem5pr  9308  mulcmpblnr  9353  mulclsr  9363  mulasssr  9369  distrsr  9370  m1m1sr  9372  1idsr  9377  00sr  9378  recexsrlem  9382  mulgt0sr  9384
  Copyright terms: Public domain W3C validator