MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpr Structured version   Unicode version

Theorem mulclpr 9389
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )

Proof of Theorem mulclpr
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 9353 . 2  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
2 mulclnq 9316 . 2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3 ltmnq 9341 . 2  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h  .Q  f )  <Q  (
h  .Q  g ) ) )
4 mulcomnq 9322 . 2  |-  ( x  .Q  y )  =  ( y  .Q  x
)
5 mulclprlem 9388 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
61, 2, 3, 4, 5genpcl 9377 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1872  (class class class)co 6242    .Q cmq 9225   P.cnp 9228    .P. cmp 9231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-inf2 8092
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-1o 7130  df-oadd 7134  df-omul 7135  df-er 7311  df-ni 9241  df-mi 9243  df-lti 9244  df-mpq 9278  df-ltpq 9279  df-enq 9280  df-nq 9281  df-erq 9282  df-mq 9284  df-1nq 9285  df-rq 9286  df-ltnq 9287  df-np 9350  df-mp 9353
This theorem is referenced by:  mulasspr  9393  distrlem1pr  9394  distrlem4pr  9395  distrlem5pr  9396  mulcmpblnr  9439  mulclsr  9452  mulasssr  9458  distrsr  9459  m1m1sr  9461  1idsr  9466  00sr  9467  recexsrlem  9471  mulgt0sr  9473
  Copyright terms: Public domain W3C validator