MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanpi Structured version   Unicode version

Theorem mulcanpi 9267
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <-> 
B  =  C ) )

Proof of Theorem mulcanpi
StepHypRef Expression
1 mulclpi 9260 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
2 eleq1 2526 . . . . . . . . . 10  |-  ( ( A  .N  B )  =  ( A  .N  C )  ->  (
( A  .N  B
)  e.  N.  <->  ( A  .N  C )  e.  N. ) )
31, 2syl5ib 219 . . . . . . . . 9  |-  ( ( A  .N  B )  =  ( A  .N  C )  ->  (
( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  C
)  e.  N. )
)
43imp 427 . . . . . . . 8  |-  ( ( ( A  .N  B
)  =  ( A  .N  C )  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( A  .N  C )  e.  N. )
5 dmmulpi 9258 . . . . . . . . 9  |-  dom  .N  =  ( N.  X.  N. )
6 0npi 9249 . . . . . . . . 9  |-  -.  (/)  e.  N.
75, 6ndmovrcl 6434 . . . . . . . 8  |-  ( ( A  .N  C )  e.  N.  ->  ( A  e.  N.  /\  C  e.  N. ) )
8 simpr 459 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  C  e.  N. )
94, 7, 83syl 20 . . . . . . 7  |-  ( ( ( A  .N  B
)  =  ( A  .N  C )  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  C  e.  N. )
10 mulpiord 9252 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
1110adantr 463 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
12 mulpiord 9252 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
1312adantlr 712 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  C )  =  ( A  .o  C ) )
1411, 13eqeq12d 2476 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  <->  ( A  .o  B )  =  ( A  .o  C ) ) )
15 pinn 9245 . . . . . . . . . . . . 13  |-  ( A  e.  N.  ->  A  e.  om )
16 pinn 9245 . . . . . . . . . . . . 13  |-  ( B  e.  N.  ->  B  e.  om )
17 pinn 9245 . . . . . . . . . . . . 13  |-  ( C  e.  N.  ->  C  e.  om )
18 elni2 9244 . . . . . . . . . . . . . . . 16  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
1918simprbi 462 . . . . . . . . . . . . . . 15  |-  ( A  e.  N.  ->  (/)  e.  A
)
20 nnmcan 7275 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
2120biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2219, 21sylan2 472 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  A  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2322ex 432 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
2415, 16, 17, 23syl3an 1268 . . . . . . . . . . . 12  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
25243exp 1193 . . . . . . . . . . 11  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
2625com4r 86 . . . . . . . . . 10  |-  ( A  e.  N.  ->  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
2726pm2.43i 47 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) )
2827imp31 430 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2914, 28sylbid 215 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  ->  B  =  C ) )
309, 29sylan2 472 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( ( A  .N  B )  =  ( A  .N  C )  /\  ( A  e. 
N.  /\  B  e.  N. ) ) )  -> 
( ( A  .N  B )  =  ( A  .N  C )  ->  B  =  C ) )
3130exp32 603 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  ->  ( ( A  e.  N.  /\  B  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  ->  B  =  C )
) ) )
3231imp4b 588 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  B  =  C ) )
3332pm2.43i 47 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  B  =  C )
3433ex 432 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  ->  B  =  C ) )
35 oveq2 6278 . 2  |-  ( B  =  C  ->  ( A  .N  B )  =  ( A  .N  C
) )
3634, 35impbid1 203 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <-> 
B  =  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   (/)c0 3783  (class class class)co 6270   omcom 6673    .o comu 7120   N.cnpi 9211    .N cmi 9213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-omul 7127  df-ni 9239  df-mi 9241
This theorem is referenced by:  enqer  9288  nqereu  9296  adderpqlem  9321  mulerpqlem  9322
  Copyright terms: Public domain W3C validator