MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Unicode version

Theorem mulcand 9974
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1  |-  ( ph  ->  A  e.  CC )
mulcand.2  |-  ( ph  ->  B  e.  CC )
mulcand.3  |-  ( ph  ->  C  e.  CC )
mulcand.4  |-  ( ph  ->  C  =/=  0 )
Assertion
Ref Expression
mulcand  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )

Proof of Theorem mulcand
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
2 mulcand.4 . . . 4  |-  ( ph  ->  C  =/=  0 )
3 recex 9973 . . . 4  |-  ( ( C  e.  CC  /\  C  =/=  0 )  ->  E. x  e.  CC  ( C  x.  x
)  =  1 )
41, 2, 3syl2anc 661 . . 3  |-  ( ph  ->  E. x  e.  CC  ( C  x.  x
)  =  1 )
5 oveq2 6104 . . . 4  |-  ( ( C  x.  A )  =  ( C  x.  B )  ->  (
x  x.  ( C  x.  A ) )  =  ( x  x.  ( C  x.  B
) ) )
6 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  x  e.  CC )
71adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  C  e.  CC )
86, 7mulcomd 9412 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  ( C  x.  x ) )
9 simprr 756 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( C  x.  x
)  =  1 )
108, 9eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  1 )
1110oveq1d 6111 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( 1  x.  A ) )
12 mulcand.1 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1312adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  A  e.  CC )
146, 7, 13mulassd 9414 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( x  x.  ( C  x.  A ) ) )
1513mulid2d 9409 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  A
)  =  A )
1611, 14, 153eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  A )
)  =  A )
1710oveq1d 6111 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( 1  x.  B ) )
18 mulcand.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1918adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  B  e.  CC )
206, 7, 19mulassd 9414 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( x  x.  ( C  x.  B ) ) )
2119mulid2d 9409 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  B
)  =  B )
2217, 20, 213eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  B )
)  =  B )
2316, 22eqeq12d 2457 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  ( C  x.  A
) )  =  ( x  x.  ( C  x.  B ) )  <-> 
A  =  B ) )
245, 23syl5ib 219 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
254, 24rexlimddv 2850 . 2  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
26 oveq2 6104 . 2  |-  ( A  =  B  ->  ( C  x.  A )  =  ( C  x.  B ) )
2725, 26impbid1 203 1  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   E.wrex 2721  (class class class)co 6096   CCcc 9285   0cc0 9287   1c1 9288    x. cmul 9292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603
This theorem is referenced by:  mulcan2d  9975  mulcanad  9976  mulcan  9978  div11  10025  eqneg  10056  qredeq  13797  prmirredlem  17922  prmirredlemOLD  17925  tanarg  22073  quad2  22239  atandm2  22277  lgseisenlem2  22694  frgregordn0  30668
  Copyright terms: Public domain W3C validator