MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulc1cncf Unicode version

Theorem mulc1cncf 18888
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
Assertion
Ref Expression
mulc1cncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem mulc1cncf
Dummy variables  u  t  v  w  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 9030 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
2 mulc1cncf.1 . . 3  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
31, 2fmptd 5852 . 2  |-  ( A  e.  CC  ->  F : CC --> CC )
4 simprr 734 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  z  e.  RR+ )
5 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  A  e.  CC )
6 simprl 733 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  y  e.  CC )
7 mulcn2 12344 . . . . 5  |-  ( ( z  e.  RR+  /\  A  e.  CC  /\  y  e.  CC )  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
84, 5, 6, 7syl3anc 1184 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
9 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  -  A )  =  ( A  -  A ) )
109fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  ( abs `  ( v  -  A ) )  =  ( abs `  ( A  -  A )
) )
1110breq1d 4182 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  (
( abs `  (
v  -  A ) )  <  t  <->  ( abs `  ( A  -  A
) )  <  t
) )
1211anbi1d 686 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
13 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  x.  u )  =  ( A  x.  u ) )
1413oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  (
( v  x.  u
)  -  ( A  x.  y ) )  =  ( ( A  x.  u )  -  ( A  x.  y
) ) )
1514fveq2d 5691 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  =  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) ) )
1615breq1d 4182 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
1712, 16imbi12d 312 . . . . . . . . . . 11  |-  ( v  =  A  ->  (
( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1817ralbidv 2686 . . . . . . . . . 10  |-  ( v  =  A  ->  ( A. u  e.  CC  ( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1918rspcv 3008 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
2019ad2antrr 707 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
21 subid 9277 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
2221ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  -  A
)  =  0 )
2322abs00bd 12051 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  =  0 )
24 simprll 739 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
t  e.  RR+ )
2524rpgt0d 10607 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
0  <  t )
2623, 25eqbrtrd 4192 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  <  t )
2726biantrurd 495 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
u  -  y ) )  <  w  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
28 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  ->  u  e.  CC )
29 oveq2 6048 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
30 ovex 6065 . . . . . . . . . . . . . . . 16  |-  ( A  x.  u )  e. 
_V
3129, 2, 30fvmpt 5765 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  ->  ( F `  u )  =  ( A  x.  u ) )
3228, 31syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  u
)  =  ( A  x.  u ) )
33 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
y  e.  CC )
34 oveq2 6048 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
35 ovex 6065 . . . . . . . . . . . . . . . 16  |-  ( A  x.  y )  e. 
_V
3634, 2, 35fvmpt 5765 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  ->  ( F `  y )  =  ( A  x.  y ) )
3733, 36syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  y
)  =  ( A  x.  y ) )
3832, 37oveq12d 6058 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( F `  u )  -  ( F `  y )
)  =  ( ( A  x.  u )  -  ( A  x.  y ) ) )
3938fveq2d 5691 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) ) )
4039breq1d 4182 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
4127, 40imbi12d 312 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4241anassrs 630 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  ( t  e.  RR+  /\  w  e.  RR+ )
)  /\  u  e.  CC )  ->  ( ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4342ralbidva 2682 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4420, 43sylibrd 226 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4544anassrs 630 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  t  e.  RR+ )  /\  w  e.  RR+ )  -> 
( A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4645reximdva 2778 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  t  e.  RR+ )  ->  ( E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4746rexlimdva 2790 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  ( E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
488, 47mpd 15 . . 3  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
4948ralrimivva 2758 . 2  |-  ( A  e.  CC  ->  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
50 ssid 3327 . . 3  |-  CC  C_  CC
51 elcncf2 18873 . . 3  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) ) )
5250, 50, 51mp2an 654 . 2  |-  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
533, 49, 52sylanbrc 646 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946    x. cmul 8951    < clt 9076    - cmin 9247   RR+crp 10568   abscabs 11994   -cn->ccncf 18859
This theorem is referenced by:  divccncf  18889  sincn  20313  coscn  20314  logcn  20491  mulc1cncfg  27588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-cncf 18861
  Copyright terms: Public domain W3C validator