MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulc1cncf Structured version   Unicode version

Theorem mulc1cncf 21833
Description: Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
mulc1cncf.1  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
Assertion
Ref Expression
mulc1cncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem mulc1cncf
Dummy variables  u  t  v  w  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 9622 . . 3  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
2 mulc1cncf.1 . . 3  |-  F  =  ( x  e.  CC  |->  ( A  x.  x
) )
31, 2fmptd 6061 . 2  |-  ( A  e.  CC  ->  F : CC --> CC )
4 simprr 764 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  z  e.  RR+ )
5 simpl 458 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  A  e.  CC )
6 simprl 762 . . . . 5  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  y  e.  CC )
7 mulcn2 13637 . . . . 5  |-  ( ( z  e.  RR+  /\  A  e.  CC  /\  y  e.  CC )  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
84, 5, 6, 7syl3anc 1264 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z ) )
9 oveq1 6312 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  -  A )  =  ( A  -  A ) )
109fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  ( abs `  ( v  -  A ) )  =  ( abs `  ( A  -  A )
) )
1110breq1d 4436 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  (
( abs `  (
v  -  A ) )  <  t  <->  ( abs `  ( A  -  A
) )  <  t
) )
1211anbi1d 709 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
13 oveq1 6312 . . . . . . . . . . . . . . 15  |-  ( v  =  A  ->  (
v  x.  u )  =  ( A  x.  u ) )
1413oveq1d 6320 . . . . . . . . . . . . . 14  |-  ( v  =  A  ->  (
( v  x.  u
)  -  ( A  x.  y ) )  =  ( ( A  x.  u )  -  ( A  x.  y
) ) )
1514fveq2d 5885 . . . . . . . . . . . . 13  |-  ( v  =  A  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  =  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) ) )
1615breq1d 4436 . . . . . . . . . . . 12  |-  ( v  =  A  ->  (
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
1712, 16imbi12d 321 . . . . . . . . . . 11  |-  ( v  =  A  ->  (
( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1817ralbidv 2871 . . . . . . . . . 10  |-  ( v  =  A  ->  ( A. u  e.  CC  ( ( ( abs `  ( v  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
1918rspcv 3184 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
2019ad2antrr 730 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
21 subid 9892 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
2221ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( A  -  A
)  =  0 )
2322abs00bd 13333 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  =  0 )
24 simprll 770 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
t  e.  RR+ )
2524rpgt0d 11344 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
0  <  t )
2623, 25eqbrtrd 4446 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  ( A  -  A )
)  <  t )
2726biantrurd 510 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
u  -  y ) )  <  w  <->  ( ( abs `  ( A  -  A ) )  < 
t  /\  ( abs `  ( u  -  y
) )  <  w
) ) )
28 simprr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  ->  u  e.  CC )
29 oveq2 6313 . . . . . . . . . . . . . . . 16  |-  ( x  =  u  ->  ( A  x.  x )  =  ( A  x.  u ) )
30 ovex 6333 . . . . . . . . . . . . . . . 16  |-  ( A  x.  u )  e. 
_V
3129, 2, 30fvmpt 5964 . . . . . . . . . . . . . . 15  |-  ( u  e.  CC  ->  ( F `  u )  =  ( A  x.  u ) )
3228, 31syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  u
)  =  ( A  x.  u ) )
33 simplrl 768 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
y  e.  CC )
34 oveq2 6313 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
35 ovex 6333 . . . . . . . . . . . . . . . 16  |-  ( A  x.  y )  e. 
_V
3634, 2, 35fvmpt 5964 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  ->  ( F `  y )  =  ( A  x.  y ) )
3733, 36syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( F `  y
)  =  ( A  x.  y ) )
3832, 37oveq12d 6323 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( F `  u )  -  ( F `  y )
)  =  ( ( A  x.  u )  -  ( A  x.  y ) ) )
3938fveq2d 5885 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) ) )
4039breq1d 4436 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z  <->  ( abs `  ( ( A  x.  u )  -  ( A  x.  y )
) )  <  z
) )
4127, 40imbi12d 321 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( (
t  e.  RR+  /\  w  e.  RR+ )  /\  u  e.  CC ) )  -> 
( ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4241anassrs 652 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  ( t  e.  RR+  /\  w  e.  RR+ )
)  /\  u  e.  CC )  ->  ( ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <-> 
( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4342ralbidva 2868 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z )  <->  A. u  e.  CC  ( ( ( abs `  ( A  -  A
) )  <  t  /\  ( abs `  (
u  -  y ) )  <  w )  ->  ( abs `  (
( A  x.  u
)  -  ( A  x.  y ) ) )  <  z ) ) )
4420, 43sylibrd 237 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  ( t  e.  RR+  /\  w  e.  RR+ ) )  ->  ( A. v  e.  CC  A. u  e.  CC  (
( ( abs `  (
v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  <  w )  -> 
( abs `  (
( v  x.  u
)  -  ( A  x.  y ) ) )  <  z )  ->  A. u  e.  CC  ( ( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4544anassrs 652 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ ) )  /\  t  e.  RR+ )  /\  w  e.  RR+ )  -> 
( A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4645reximdva 2907 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  /\  t  e.  RR+ )  ->  ( E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
4746rexlimdva 2924 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  ( E. t  e.  RR+  E. w  e.  RR+  A. v  e.  CC  A. u  e.  CC  ( ( ( abs `  ( v  -  A ) )  <  t  /\  ( abs `  ( u  -  y ) )  < 
w )  ->  ( abs `  ( ( v  x.  u )  -  ( A  x.  y
) ) )  < 
z )  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
488, 47mpd 15 . . 3  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  RR+ )
)  ->  E. w  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  y
) )  <  w  ->  ( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
4948ralrimivva 2853 . 2  |-  ( A  e.  CC  ->  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) )
50 ssid 3489 . . 3  |-  CC  C_  CC
51 elcncf2 21818 . . 3  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) ) )
5250, 50, 51mp2an 676 . 2  |-  ( F  e.  ( CC -cn-> CC )  <->  ( F : CC
--> CC  /\  A. y  e.  CC  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  y ) )  <  w  -> 
( abs `  (
( F `  u
)  -  ( F `
 y ) ) )  <  z ) ) )
533, 49, 52sylanbrc 668 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   0cc0 9538    x. cmul 9543    < clt 9674    - cmin 9859   RR+crp 11302   abscabs 13276   -cn->ccncf 21804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-cncf 21806
This theorem is referenced by:  divccncf  21834  sincn  23264  coscn  23265  logcn  23457  mulc1cncfg  37239  dirkeritg  37533  dirkercncflem2  37535
  Copyright terms: Public domain W3C validator