MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasssr Structured version   Unicode version

Theorem mulasssr 9499
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulasssr  |-  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) )

Proof of Theorem mulasssr
Dummy variables  f 
g  h  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9466 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 mulsrpr 9485 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
3 mulsrpr 9485 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( z  .P.  v
)  +P.  ( w  .P.  u ) ) ,  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) >. ]  ~R  )
4 mulsrpr 9485 . . 3  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  .P.  v
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  .P.  u ) ) ,  ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  .P.  u )  +P.  (
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  .P.  v )
) >. ]  ~R  )
5 mulsrpr 9485 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P.  /\  ( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( ( z  .P.  v
)  +P.  ( w  .P.  u ) ) ,  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( x  .P.  ( ( z  .P.  v )  +P.  ( w  .P.  u
) ) )  +P.  ( y  .P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ) ) ,  ( ( x  .P.  ( ( z  .P.  u )  +P.  ( w  .P.  v ) ) )  +P.  ( y  .P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) ) ) >. ]  ~R  )
6 mulclpr 9430 . . . . . 6  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
7 mulclpr 9430 . . . . . 6  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
8 addclpr 9428 . . . . . 6  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
96, 7, 8syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
109an4s 829 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
11 mulclpr 9430 . . . . . 6  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
12 mulclpr 9430 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
13 addclpr 9428 . . . . . 6  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1411, 12, 13syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1514an42s 830 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1610, 15jca 532 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
17 mulclpr 9430 . . . . . 6  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
18 mulclpr 9430 . . . . . 6  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
19 addclpr 9428 . . . . . 6  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
2017, 18, 19syl2an 477 . . . . 5  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
2120an4s 829 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
22 mulclpr 9430 . . . . . 6  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
23 mulclpr 9430 . . . . . 6  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
24 addclpr 9428 . . . . . 6  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
2522, 23, 24syl2an 477 . . . . 5  |-  ( ( ( z  e.  P.  /\  u  e.  P. )  /\  ( w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
2625an42s 830 . . . 4  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
2721, 26jca 532 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( z  .P.  v
)  +P.  ( w  .P.  u ) )  e. 
P.  /\  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. ) )
28 vex 3064 . . . 4  |-  x  e. 
_V
29 vex 3064 . . . 4  |-  y  e. 
_V
30 vex 3064 . . . 4  |-  z  e. 
_V
31 mulcompr 9433 . . . 4  |-  ( f  .P.  g )  =  ( g  .P.  f
)
32 distrpr 9438 . . . 4  |-  ( f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
)
33 vex 3064 . . . 4  |-  w  e. 
_V
34 vex 3064 . . . 4  |-  v  e. 
_V
35 mulasspr 9434 . . . 4  |-  ( ( f  .P.  g )  .P.  h )  =  ( f  .P.  (
g  .P.  h )
)
36 vex 3064 . . . 4  |-  u  e. 
_V
37 addcompr 9431 . . . 4  |-  ( f  +P.  g )  =  ( g  +P.  f
)
38 addasspr 9432 . . . 4  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
3928, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38caovlem2 6494 . . 3  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  .P.  v )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  .P.  u
) )  =  ( ( x  .P.  (
( z  .P.  v
)  +P.  ( w  .P.  u ) ) )  +P.  ( y  .P.  ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ) )
4028, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38caovlem2 6494 . . 3  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  .P.  u )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  .P.  v
) )  =  ( ( x  .P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  +P.  ( y  .P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) ) )
411, 2, 3, 4, 5, 16, 27, 39, 40ecovass 7457 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  B
)  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
42 dmmulsr 9495 . . 3  |-  dom  .R  =  ( R.  X.  R. )
43 0nsr 9488 . . 3  |-  -.  (/)  e.  R.
4442, 43ndmovass 6446 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  B )  .R  C
)  =  ( A  .R  ( B  .R  C ) ) )
4541, 44pm2.61i 166 1  |-  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844  (class class class)co 6280   P.cnp 9269    +P. cpp 9271    .P. cmp 9272    ~R cer 9274   R.cnr 9275    .R cmr 9280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-omul 7174  df-er 7350  df-ec 7352  df-qs 7356  df-ni 9282  df-pli 9283  df-mi 9284  df-lti 9285  df-plpq 9318  df-mpq 9319  df-ltpq 9320  df-enq 9321  df-nq 9322  df-erq 9323  df-plq 9324  df-mq 9325  df-1nq 9326  df-rq 9327  df-ltnq 9328  df-np 9391  df-plp 9393  df-mp 9394  df-ltp 9395  df-enr 9465  df-nr 9466  df-mr 9468
This theorem is referenced by:  sqgt0sr  9515  recexsr  9516  axmulass  9566
  Copyright terms: Public domain W3C validator