MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspi Structured version   Unicode version

Theorem mulasspi 9180
Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspi  |-  ( ( A  .N  B )  .N  C )  =  ( A  .N  ( B  .N  C ) )

Proof of Theorem mulasspi
StepHypRef Expression
1 pinn 9161 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 9161 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 9161 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
4 nnmass 7176 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
51, 2, 3, 4syl3an 1261 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
6 mulclpi 9176 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
7 mulpiord 9168 . . . . . 6  |-  ( ( ( A  .N  B
)  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C
)  =  ( ( A  .N  B )  .o  C ) )
86, 7sylan 471 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .N  B
)  .o  C ) )
9 mulpiord 9168 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
109oveq1d 6218 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  .o  C
)  =  ( ( A  .o  B )  .o  C ) )
1110adantr 465 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .o  C )  =  ( ( A  .o  B
)  .o  C ) )
128, 11eqtrd 2495 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C )  =  ( ( A  .o  B
)  .o  C ) )
13123impa 1183 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( ( A  .o  B )  .o  C ) )
14 mulclpi 9176 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
15 mulpiord 9168 . . . . . 6  |-  ( ( A  e.  N.  /\  ( B  .N  C
)  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .N  C
) ) )
1614, 15sylan2 474 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .N  C ) ) )
17 mulpiord 9168 . . . . . . 7  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  =  ( B  .o  C ) )
1817oveq2d 6219 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C
) ) )
1918adantl 466 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .o  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
2016, 19eqtrd 2495 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  .N  C
) )  =  ( A  .o  ( B  .o  C ) ) )
21203impb 1184 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  .N  C ) )  =  ( A  .o  ( B  .o  C ) ) )
225, 13, 213eqtr4d 2505 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  .N  C )  =  ( A  .N  ( B  .N  C
) ) )
23 dmmulpi 9174 . . 3  |-  dom  .N  =  ( N.  X.  N. )
24 0npi 9165 . . 3  |-  -.  (/)  e.  N.
2523, 24ndmovass 6364 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( ( A  .N  B )  .N  C
)  =  ( A  .N  ( B  .N  C ) ) )
2622, 25pm2.61i 164 1  |-  ( ( A  .N  B )  .N  C )  =  ( A  .N  ( B  .N  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758  (class class class)co 6203   omcom 6589    .o comu 7031   N.cnpi 9125    .N cmi 9127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-oadd 7037  df-omul 7038  df-ni 9155  df-mi 9157
This theorem is referenced by:  enqer  9204  adderpqlem  9237  mulerpqlem  9238  addassnq  9241  mulassnq  9242  mulcanenq  9243  distrnq  9244  ltsonq  9252  lterpq  9253  ltanq  9254  ltmnq  9255  ltexnq  9258
  Copyright terms: Public domain W3C validator