MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4d Structured version   Unicode version

Theorem mul4d 9791
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
addcand.3  |-  ( ph  ->  C  e.  CC )
mul4d.4  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
mul4d  |-  ( ph  ->  ( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )

Proof of Theorem mul4d
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addcand.3 . 2  |-  ( ph  ->  C  e.  CC )
4 mul4d.4 . 2  |-  ( ph  ->  D  e.  CC )
5 mul4 9748 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
61, 2, 3, 4, 5syl22anc 1229 1  |-  ( ph  ->  ( ( A  x.  B )  x.  ( C  x.  D )
)  =  ( ( A  x.  C )  x.  ( B  x.  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767  (class class class)co 6284   CCcc 9490    x. cmul 9497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-mulcl 9554  ax-mulcom 9556  ax-mulass 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5551  df-fv 5596  df-ov 6287
This theorem is referenced by:  remullem  12924  absmul  13090  cosadd  13761  tanadd  13763  eulerthlem2  14171  mul4sqlem  14330  odadd2  16658  itgmulc2  22003  plymullem1  22374  chordthmlem4  22922  heron  22925  quartlem1  22944  dchrmulcl  23280  bposlem9  23323  lgsdir  23361  lgsdi  23363  lgsquad2lem1  23389  chtppilimlem1  23414  rplogsumlem1  23425  dchrvmasumlem1  23436  dchrvmasum2lem  23437  chpdifbndlem1  23494  pntlemf  23546  brbtwn2  23912  colinearalglem4  23916  circum  28543  binomrisefac  28769  itgmulc2nc  29688  pellexlem6  30402  pell1234qrmulcl  30423  rmxyadd  30489  wallispi2lem2  31400  dirkertrigeqlem3  31428  cevathlem1  31579
  Copyright terms: Public domain W3C validator