MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12i Structured version   Unicode version

Theorem mul12i 9770
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
mul.3  |-  C  e.  CC
Assertion
Ref Expression
mul12i  |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
)

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 mul.3 . 2  |-  C  e.  CC
4 mul12 9741 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )
51, 2, 3, 4mp3an 1324 1  |-  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767  (class class class)co 6282   CCcc 9486    x. cmul 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-mulcom 9552  ax-mulass 9554
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5549  df-fv 5594  df-ov 6285
This theorem is referenced by:  faclbnd4lem1  12335  decsplit  14424  root1eq1  22857  cxpeq  22859  1cubrlem  22900  efiatan2  22976  2efiatan  22977  tanatan  22978  log2ublem2  23006  log2ublem3  23007  bposlem8  23294  ax5seglem7  23914  ip1ilem  25417  ipasslem10  25430  polid2i  25750  bpoly3  29397
  Copyright terms: Public domain W3C validator