Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12i Structured version   Unicode version

Theorem mul12i 9792
 Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1
mul.2
mul.3
Assertion
Ref Expression
mul12i

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2
2 mul.2 . 2
3 mul.3 . 2
4 mul12 9763 . 2
51, 2, 3, 4mp3an 1324 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1395   wcel 1819  (class class class)co 6296  cc 9507   cmul 9514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-mulcom 9573  ax-mulass 9575 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-iota 5557  df-fv 5602  df-ov 6299 This theorem is referenced by:  faclbnd4lem1  12373  decsplit  14580  root1eq1  23254  cxpeq  23256  1cubrlem  23297  efiatan2  23373  2efiatan  23374  tanatan  23375  log2ublem2  23403  log2ublem3  23404  bposlem8  23691  ax5seglem7  24364  ip1ilem  25867  ipasslem10  25880  polid2i  26200  bpoly3  29982
 Copyright terms: Public domain W3C validator